ﻻ يوجد ملخص باللغة العربية
We demonstrate the existence of unconventional rheological and memory properties in systems of soft-deformable particles whose energy depends on their shape, via numerical simulations. At large strains, these systems experience an unconventional shear weakening transition characterized by an increase in the mechanical energy and a drastic drop in shear stress, which stems from the emergence of short-ranged tetratic order. In these weakened states, the contact network evolves reversibly under strain reversal, keeping memory of its initial state, while the microscopic dynamics is irreversible.
We investigate the structural, vibrational, and mechanical properties of jammed packings of deformable particles with shape degrees of freedom in three dimensions (3D). Each 3D deformable particle is modeled as a surface-triangulated polyhedron, with
We discuss in this work the validity of the theoretical solution of the nonlinear Couette flow for a granular impurity obtained in a recent work [preprint arXiv:0802.0526], in the range of large inelasticity and shear rate. We show there is a good ag
The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issu
Different from previous modelings of self-propelled particles, we develop a method to propel the particles with a constant average velocity instead of a constant force. This constant propulsion velocity (CPV) approach is validated by its agreement wi
We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in which the shear stress sigma is driven at a constant shear rate dotgamma and relaxes by two parallel decay processes: a nonlinear decay at a no