ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobile-Former: Bridging MobileNet and Transformer

193   0   0.0 ( 0 )
 نشر من قبل Dongdong Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Mobile-Former, a parallel design of MobileNet and Transformer with a two-way bridge in between. This structure leverages the advantage of MobileNet at local processing and transformer at global interaction. And the bridge enables bidirectional fusion of local and global features. Different with recent works on vision transformer, the transformer in Mobile-Former contains very few tokens (e.g. less than 6 tokens) that are randomly initialized, resulting in low computational cost. Combining with the proposed light-weight cross attention to model the bridge, Mobile-Former is not only computationally efficient, but also has more representation power, outperforming MobileNetV3 at low FLOP regime from 25M to 500M FLOPs on ImageNet classification. For instance, it achieves 77.9% top-1 accuracy at 294M FLOPs, gaining 1.3% over MobileNetV3 but saving 17% of computations. When transferring to object detection, Mobile-Former outperforms MobileNetV3 by 8.6 AP.



قيم البحث

اقرأ أيضاً

Binary Neural Networks (BNNs), known to be one among the effectively compact network architectures, have achieved great outcomes in the visual tasks. Designing efficient binary architectures is not trivial due to the binary nature of the network. In this paper, we propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet, a compact network with separable depth-wise convolution. Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs), assuming an approximately optimal trade-off between computational cost and model accuracy. Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution while optimizing the model performance in terms of complexity and latency. The approach is threefold. First, we train strong baseline binary networks with a wide range of random group combinations at each convolutional layer. This set-up gives the binary neural networks a capability of preserving essential information through layers. Second, to find a good set of hyperparameters for group convolutions we make use of the evolutionary search which leverages the exploration of efficient 1-bit models. Lastly, these binary models are trained from scratch in a usual manner to achieve the final binary model. Various experiments on ImageNet are conducted to show that following our construction guideline, the final model achieves 60.09% Top-1 accuracy and outperforms the state-of-the-art CI-BCNN with the same computational cost.
Transformers struggle when attending to long contexts, since the amount of computation grows with the context length, and therefore they cannot model long-term memories effectively. Several variations have been proposed to alleviate this problem, but they all have a finite memory capacity, being forced to drop old information. In this paper, we propose the $infty$-former, which extends the vanilla transformer with an unbounded long-term memory. By making use of a continuous-space attention mechanism to attend over the long-term memory, the $infty$-formers attention complexity becomes independent of the context length. Thus, it is able to model arbitrarily long contexts and maintain sticky memories while keeping a fixed computation budget. Experiments on a synthetic sorting task demonstrate the ability of the $infty$-former to retain information from long sequences. We also perform experiments on language modeling, by training a model from scratch and by fine-tuning a pre-trained language model, which show benefits of unbounded long-term memories.
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation. The convolutional operations used in these networks, however, inevitably have limitations in modeling the long-range dependency due to th eir inductive bias of locality and weight sharing. Although Transformer was born to address this issue, it suffers from extreme computational and spatial complexities in processing high-resolution 3D feature maps. In this paper, we propose a novel framework that efficiently bridges a {bf Co}nvolutional neural network and a {bf Tr}ansformer {bf (CoTr)} for accurate 3D medical image segmentation. Under this framework, the CNN is constructed to extract feature representations and an efficient deformable Transformer (DeTrans) is built to model the long-range dependency on the extracted feature maps. Different from the vanilla Transformer which treats all image positions equally, our DeTrans pays attention only to a small set of key positions by introducing the deformable self-attention mechanism. Thus, the computational and spatial complexities of DeTrans have been greatly reduced, making it possible to process the multi-scale and high-resolution feature maps, which are usually of paramount importance for image segmentation. We conduct an extensive evaluation on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that covers 11 major human organs. The results indicate that our CoTr leads to a substantial performance improvement over other CNN-based, transformer-based, and hybrid methods on the 3D multi-organ segmentation task. Code is available at defUrlFont{rmsmallttfamily} url{https://github.com/YtongXie/CoTr}
280 - Cheng Chi , Fangyun Wei , Han Hu 2020
Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While t hese different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~cite{vaswani2017attention} to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of emph{key} instances to strengthen the main emph{query} representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a emph{key sampling} approach and a emph{shared location embedding} approach. The proposed module is named emph{bridging visual representations} (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about $1.5sim3.0$ AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about $2.0$ AP, reaching $52.7$ AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.
What mechanisms causes GANs entanglement? Although developing disentangled GAN has attracted sufficient attention, it is unclear how entanglement is originated by GAN transformation. We in this research propose a difference-in-difference (DID) counte rfactual framework to design experiments for analyzing the entanglement mechanism in on of the Progressive-growing GAN (PG-GAN). Our experiment clarify the mechanisms how pixel normalization causes PG-GAN entanglement during a input-unit-ablation transformation. We discover that pixel normalization causes object entanglement by in-painting the area occupied by ablated objects. We also discover the unit-object relation determines whether and how pixel normalization causes objects entanglement. Our DID framework theoretically guarantees that the mechanisms that we discover is solid, explainable and comprehensively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا