ترغب بنشر مسار تعليمي؟ اضغط هنا

Global QCD analysis of pion parton distributions with threshold resummation

109   0   0.0 ( 0 )
 نشر من قبل Patrick Barry
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform the first global QCD analysis of pion valence, sea quark, and gluon distributions within a Bayesian Monte Carlo framework with threshold resummation on Drell-Yan cross sections at next-to-leading log accuracy. Exploring various treatments of resummation, we find that the large-$x$ asymptotics of the valence quark distribution $sim (1-x)^{beta_v}$ can differ significantly, with $beta_v$ ranging from $approx 1$ to $> 2.5$ at the input scale. Regardless of the specific implementation, however, the resummation induced redistribution of the momentum between valence quarks and gluons boosts the total momentum carried by gluons to $approx 40%$, increasing the gluon contribution to the pion mass to $approx 40$ MeV.



قيم البحث

اقرأ أيضاً

321 - N. Y. Cao , P. C. Barry , N. Sato 2021
We perform a new Monte Carlo QCD analysis of pion parton distribution functions, including, for the first time, transverse momentum dependent pion-nucleus Drell-Yan cross sections together with $p_{rm T}$-integrated Drell-Yan and leading neutron elec troproduction data from HERA. We assess the sensitivity of the Monte Carlo fits to kinematic cuts, factorization scale, and parametrization choice, and we discuss the impact of the various data sets on the pions quark and gluon distributions. This study provides the necessary step towards the simultaneous analysis of collinear and transverse momentum dependent pion distributions and the determination of the pions 3-dimensional structure.
A new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented. This work significantly extends previous CTEQ and other global analyses on two fronts: (i) a full treatment of availa ble experimental correlated systematic errors for both new and old data sets; (ii) a systematic and pragmatic treatment of uncertainties of the parton distributions and their physical predictions, using a recently developed eigenvector-basis approach to the Hessian method. The new gluon distribution is considerably harder than that of previous standard fits. A number of physics issues, particularly relating to the behavior of the gluon distribution, are addressed in more quantitative terms than before. Extensive results on the uncertainties of parton distributions at various scales, and on parton luminosity functions at the Tevatron RunII and the LHC, are presented. The latter provide the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, based on current knowledge of the parton distributions. In particular, the uncertainties on the production cross sections of the $W,Z$ at the Tevatron and the LHC are estimated to be $pm 4%$ and $pm 5%$ respectively, and that of a light Higgs at the LHC to be $pm 5%$.
We present the first Monte Carlo based global QCD analysis of spin-averaged and spin-dependent parton distribution functions (PDFs) that includes nucleon isovector matrix elements in coordinate space from lattice QCD. We investigate the degree of uni versality of the extracted PDFs when the lattice and experimental data are treated under the same conditions within the Bayesian likelihood analysis. For the unpolarized sector, we find rather weak constraints from the current lattice data on the phenomenological PDFs, and difficulties in describing the lattice matrix elements at large spatial distances. In contrast, for the polarized PDFs we find good agreement between experiment and lattice data, with the latter providing significant constraints on the spin-dependent isovector quark and antiquark distributions.
The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function $w(x)$ which incorporates Regge behavior at small $x$ and inclusive counting rules at $x to 1$. A simple ans atz for $w(x)$ which fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
152 - H.L. Lai , J. Botts , J. Huston 1994
The CTEQ program for the determination of parton distributions through a global QCD analysis of data for various hard scattering processes is fully described. A new set of distributions, CTEQ3, incorporating several new types of data is reported and compared to the two previous sets of CTEQ distributions. Comparison with current data is discussed in some detail. The remaining uncertainties in the parton distributions and methods to further reduce them are assessed. Comparisons with the results of other global analyses are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا