ﻻ يوجد ملخص باللغة العربية
The widely held belief that squat lifting should be preferred over stoop lifting to prevent back injury is increasingly being challenged by recent biomechanical evidence. However, most of these studies only focus on very localized parameters such as lumbar spine flexion, while evaluations of whole-body lifting strategies are largely lacking. For this reason, a novel index, the Stoop-Squat-Index, was developed, which describes the proportion between trunk forward lean and lower extremity joint flexion, with possible values ranging from 0 (full squat lifting) to 100 (full stoop lifting). To enable the interpretation of the index in a real-life setting, normative values were established using motion capture data from 30 healthy pain-free individuals that were collected in the context of a previous study. The results showed mean index values of lower than 30 and higher than 90 for the most relevant phases of the squat and stoop movements, respectively, with mean index values differing significantly from each other for the full duration of the lifting phases. The main advantages of the index are that it is simple to calculate and can not only be derived from motion capture data but also from conventional video recordings, which enables large-scale in-field measurements with relatively low expenditure. When used in combination with lumbar spine flexion measurements, the index can contribute important information, which is necessary for comprehensively evaluating whole-body lifting strategies and to shed more light on the debate over the connection between lifting posture and back complaints.
Lifting up objects from the floor has been identified as a risk factor for low back pain, whereby a flexed spine during lifting is often associated with producing higher loads in the lumbar spine. Even though recent biomechanical studies challenge th
To simplify the quantification of time irreversibility, we employ order patterns instead of the raw multi-dimension vectors in time series, and considering the existence of forbidden permutation, we propose a subtraction-based parameter, Ys, to measu
Musculoskeletal models have the potential to improve diagnosis and optimize clinical treatment by predicting accurate outcomes on an individual basis. However, the subject-specific modeling of spinal alignment is often strongly simplified or is based
The pathogenesis of adolescent idiopathic scoliosis (AIS) remains poorly understood and biomechanical data are limited. A deeper insight into spinal loading could provide valuable information for the improvement of current treatment strategies. This
Non-specific chronic low back pain (NSCLBP) is a major health problem, affecting about one fifth of the population worldwide. To avoid further pain or injury, patients with NSCLBP seem to adopt a stiffer movement pattern during everyday living activi