ﻻ يوجد ملخص باللغة العربية
Multi-view data refers to a setting where features are divided into feature sets, for example because they correspond to different sources. Stacked penalized logistic regression (StaPLR) is a recently introduced method that can be used for classification and automatically selecting the views that are most important for prediction. We show how this method can easily be extended to a setting where the data has a hierarchical multi-view structure. We apply StaPLR to Alzheimers disease classification where different MRI measures have been calculated from three scan types: structural MRI, diffusion-weighted MRI, and resting-state fMRI. StaPLR can identify which scan types and which MRI measures are most important for classification, and it outperforms elastic net regression in classification performance.
In recent years, many papers have reported state-of-the-art performance on Alzheimers Disease classification with MRI scans from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset using convolutional neural networks. However, we discover t
We propose to apply a 2D CNN architecture to 3D MRI image Alzheimers disease classification. Training a 3D convolutional neural network (CNN) is time-consuming and computationally expensive. We make use of approximate rank pooling to transform the 3D
Mild cognitive impairment (MCI) conversion prediction, i.e., identifying MCI patients of high risks converting to Alzheimers disease (AD), is essential for preventing or slowing the progression of AD. Although previous studies have shown that the fus
With the advent of continuous health monitoring via wearable devices, users now generate their unique streams of continuous data such as minute-level physical activity or heart rate. Aggregating these streams into scalar summaries ignores the distrib
For precision medicine and personalized treatment, we need to identify predictive markers of disease. We focus on Alzheimers disease (AD), where magnetic resonance imaging scans provide information about the disease status. By combining imaging with