ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending structures for Lie bialgebras

159   0   0.0 ( 0 )
 نشر من قبل Yanyong Hong
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Yanyong Hong




اسأل ChatGPT حول البحث

Let $(mathfrak{g}, [cdot,cdot], delta_mathfrak{g})$ be a fixed Lie bialgebra, $E$ be a vector space containing $mathfrak{g}$ as a subspace and $V$ be a complement of $mathfrak{g}$ in $E$. A natural problem is that how to classify all Lie bialgebraic structures on $E$ such that $(mathfrak{g}, [cdot,cdot], delta_mathfrak{g})$ is a Lie sub-bialgebra up to an isomorphism of Lie bialgebras whose restriction on $mathfrak{g}$ is the identity map. This problem is called the extending structures problem. In this paper, we introduce a general co-product on $E$, called the unified co-product of $(mathfrak{g},delta_mathfrak{g})$ by $V$. With this unified co-product and the unified product of $(mathfrak{g}, [cdot,cdot])$ by $V$ developed in cite{AM1}, the unified bi-product of $(mathfrak{g}, [cdot,cdot], delta_mathfrak{g})$ by $V$ is introduced. Moreover, we show that any $E$ in the extending structures problem is isomorphic to a unified bi-product of $(mathfrak{g}, [cdot,cdot], delta_mathfrak{g})$ by $V$. Then an object $mathcal{HBI}_{mathfrak{g}}^2(V,mathfrak{g})$ is constructed to classify all $E$ in the extending structures problem. Moreover, several special unified bi-products are also introduced. In particular, the unified bi-products when $text{dim} V=1$ are investigated in detail.



قيم البحث

اقرأ أيضاً

227 - Ruipu Bai , Weiwei Guo , Lixin Lin 2016
The $n$-Lie bialgebras are studied. In Section 2, the $n$-Lie coalgebra with rank $r$ is defined, and the structure of it is discussed. In Section 3, the $n$-Lie bialgebra is introduced. A triple $(L, mu, Delta)$ is an $n$-Lie bialgebra if and only i f $Delta$ is a conformal $1$-cocycle on the $n$-Lie algebra $L$ associated to $L$-modules $(L^{otimes n}, rho_s^{mu})$, $1leq sleq n$, and the structure of $n$-Lie bialgebras is investigated by the structural constants. In Section 4, two-dimensional extension of finite dimensional $n$-Lie bialgebras are studied. For an $m$ dimensional $n$-Lie bialgebra $(L, mu, Delta)$, and an $ad_{mu}$-invariant symmetric bilinear form on $L$, the $m+2$ dimensional $(n+1)$-Lie bialgebra is constructed. In the last section, the bialgebra structure on the finite dimensional simple $n$-Lie algebra $A_n$ is discussed. It is proved that only bialgebra structures on the simple $n$-Lie algebra $A_n$ are rank zero, and rank two.
In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if $A$ is an $m$-dimensional 3-Lie algebra with an involutive derivation $D$, then there exists a compatible 3-pre-Lie algebra $(A, { , , , }_D)$ such that $A$ is the sub-adjacent 3-Lie algebra, and there is a local cocycle $3$-Lie bialgebraic structure on the $2m$-dimensional semi-direct product 3-Lie algebra $Altimes_{ad^*} A^*$, which is associated to the adjoint representation $(A, ad)$. By means of involutive derivations, the skew-symmetric solution of the 3-Lie classical Yang-Baxter equation in the 3-Lie algebra $Altimes_{ad^*}A^*$, a class of 3-pre-Lie algebras, and eight and ten dimensional local cocycle 3-Lie bialgebras are constructed.
We describe Hom-Lie structures on affine Kac-Moody and related Lie algebras, and discuss the question when they form a Jordan algebra.
We determine commutative post-Lie algebra structures on some infinite-dimensional Lie algebras. We show that all commutative post-Lie algebra structures on loop algebras are trivial. This extends the results for finite-dimensional perfect Lie algebra s. Furthermore we show that all commutative post-Lie algebra structures on affine Kac--Moody Lie algebras are almost trivial.
We investigate Lie algebras whose Lie bracket is also an associative or cubic associative multiplication to characterize the class of nilpotent Lie algebras with a nilindex equal to 2 or 3. In particular we study the class of 2-step nilpotent Lie alg ebras, their deformations and we compute the cohomology which parametrize the deformations in this class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا