ﻻ يوجد ملخص باللغة العربية
Product retrieval systems have served as the main entry for customers to discover and purchase products online. With increasing concerns on the transparency and accountability of AI systems, studies on explainable information retrieval has received more and more attention in the research community. Interestingly, in the domain of e-commerce, despite the extensive studies on explainable product recommendation, the studies of explainable product search is still in an early stage. In this paper, we study how to construct effective explainable product search by comparing model-agnostic explanation paradigms with model-intrinsic paradigms and analyzing the important factors that determine the performance of product search explanations. We propose an explainable product search model with model-intrinsic interpretability and conduct crowdsourcing to compare it with the state-of-the-art explainable product search model with model-agnostic interpretability. We observe that both paradigms have their own advantages and the effectiveness of search explanations on different properties are affected by different factors. For example, explanation fidelity is more important for users overall satisfaction on the system while explanation novelty may be more useful in attracting user purchases. These findings could have important implications for the future studies and design of explainable product search engines.
Product search is one of the most popular methods for customers to discover products online. Most existing studies on product search focus on developing effective retrieval models that rank items by their likelihood to be purchased. They, however, ig
Today, interpretability of Black-Box Natural Language Processing (NLP) models based on surrogates, like LIME or SHAP, uses word-based sampling to build the explanations. In this paper we explore the use of sentences to tackle NLP interpretability. Wh
Product search is an important way for people to browse and purchase items on E-commerce platforms. While customers tend to make choices based on their personal tastes and preferences, analysis of commercial product search logs has shown that persona
Product search has been a crucial entry point to serve people shopping online. Most existing personalized product models follow the paradigm of representing and matching user intents and items in the semantic space, where finer-grained matching is to
What makes two images similar? We propose new approaches to generate model-agnostic explanations for image similarity, search, and retrieval. In particular, we extend Class Activation Maps (CAMs), Additive Shapley Explanations (SHAP), and Locally Int