ﻻ يوجد ملخص باللغة العربية
The Penrose process of an extremal braneworld black hole is studied. We analyze the Penrose process by two massive spinning particles collide near the horizon. By calculating the maximum energy extraction efficiency of this process, it turns out that the maximal efficiency increases as the tilde charge parameter $d$ of the braneworld blackhole decreases. Interestingly, for the negative value of $d$, the efficiency can be even larger than the Kerr case.
Energy extraction from a rotating or charged black hole is one of fascinating issues in general relativity. The collisional Penrose process is one of such extraction mechanisms and has been reconsidered intensively since Banados, Silk and West pointe
We study the innermost stable circular orbit (ISCO) of a spinning test particle moving in the vicinity of an axially symmetric rotating braneworld black hole (BH). We start with the description of the event horizon, static limit surface and ergospher
We show that kinematics of charged particles allows us to model the growth of particles energy by consecutive particle-splits, once a spherical mirror as a perfectly reflective boundary is placed outside a charged black hole. We consider a charged ve
We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high center-of-mass energy, which occurs if either of the col
Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black holes event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergos