ﻻ يوجد ملخص باللغة العربية
Millimeter wave (mmWave) communication is a promising New Radio in Unlicensed (NR-U) technology to meet with the ever-increasing data rate and connectivity requirements in future wireless networks. However, the development of NR-U networks should consider the coexistence with the incumbent Wireless Gigabit (WiGig) networks. In this paper, we introduce a novel multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) based mmWave NR-U and WiGig coexistence network for uplink transmission. Our aim for the proposed coexistence network is to maximize the spectral efficiency while ensuring the strict NR-U delay requirement and the WiGig transmission performance in real time environments. A joint user grouping, hybrid beam coordination and power control strategy is proposed, which is formulated as a Lyapunov optimization based mixed-integer nonlinear programming (MINLP) with unit-modulus and nonconvex coupling constraints. Hence, we introduce a penalty dual decomposition (PDD) framework, which first transfers the formulated MINLP into a tractable augmented Lagrangian (AL) problem. Thereafter, we integrate both convex-concave procedure (CCCP) and inexact block coordinate update (BCU) methods to approximately decompose the AL problem into multiple nested convex subproblems, which can be iteratively solved under the PDD framework. Numerical results illustrate the performance improvement ability of the proposed strategy, as well as demonstrate the effectiveness to guarantee the NR-U traffic delay and WiGig network performance.
This paper investigates the application of non-orthogonal multiple access in millimeter-Wave communications (mmWave-NOMA). Particularly, we consider downlink transmission with a hybrid beamforming structure. A user grouping algorithm is first propose
This paper addresses the problem of joint downlink channel estimation and user grouping in massive multiple-input multiple-output (MIMO) systems, where the motivation comes from the fact that the channel estimation performance can be improved if we e
Intelligent reflecting surface (IRS) has emerged as a competitive solution to address blockage issues in millimeter wave (mmWave) and Terahertz (THz) communications due to its capability of reshaping wireless transmission environments. Nevertheless,
In this paper, using the stochastic geometry, we develop a tractable uplink modeling framework for the outage probability of both the single and multi-tier millimeter wave (mmWave) cellular networks. Each tiers mmWave base stations (BSs) are randomly
This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation. Random beamforming is invoked for reducing the feedback overh