ﻻ يوجد ملخص باللغة العربية
We analyze the IGETS based gravitational acceleration measurements to search for a variability in Newtons constant $G$, as a complement to the analysis carried out in arXiv:2103.11157. To understand the variation in gravitational acceleration, we fit the aforementioned data to a constant model, two sinusoidal models, and a linear model. We find that none of the four models provide a good fit to the data, showing that there is no evidence for periodicity or linear temporal variation in the acceleration measurements. Based on the sinusoidal models, we infer that the relative variance of $G$ is $leqslant 2 times 10^{-9}$, which is about four orders of magnitude more stringent than the amplitude of periodic variations inferred from previous $G$ measurements. From the linear model, we obtain $frac{dot{G}}{G} < 2.14 times 10^{-10} rm{yr^{-1}}$.
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010,
Roughly every 2-10 minutes, a pair of stellar mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest
The cross-correlation search has been previously applied to map the gravitational wave (GW) stochastic background in the sky and also to target GW from rotating neutron stars/pulsars. Here we investigate how the cross-correlation method can be used t
We report the results of a directed search for continuous gravitational-wave emission in a broad frequency range (between 50 and 1000 Hz) from the central compact object of the supernova remnant Cassiopeia A (Cas A). The data comes from the sixth sci
We present an implementation of the $mathcal{F}$-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars.