Linear approximability of two-layer neural networks: A comprehensive analysis based on spectral decay


الملخص بالإنكليزية

In this paper, we present a spectral-based approach to study the linear approximation of two-layer neural networks. We first consider the case of single neuron and show that the linear approximability, quantified by the Kolmogorov width, is controlled by the eigenvalue decay of an associate kernel. Then, we show that similar results also hold for two-layer neural networks. This spectral-based approach allows us to obtain upper bounds, lower bounds, and explicit hard examples in a united manner. In particular, these bounds imply that for networks activated by smooth functions, restricting the norms of inner-layer weights may significantly impair the expressiveness. By contrast, for non-smooth activation functions, such as ReLU, the network expressiveness is independent of the inner-layer weight norms. In addition, we prove that for a family of non-smooth activation functions, including ReLU, approximating any single neuron with random features suffers from the emph{curse of dimensionality}. This provides an explicit separation of expressiveness between neural networks and random feature models.

تحميل البحث