We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. SDSS g- and r-b
and surface brightness, (g- r) color, and ionized-gas oxygen abundance profiles for 324 galaxies within the CALIFA survey are used for this purpose. We perform a detailed light-profile classification finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively) while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g- r) color of ~0.5 mag and a ionized-gas metallicity flattening associated to it only in the case of low-mass galaxies. More massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass results in p-values as low as 0.01. Independently of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses $leq$10$^{10}$ M$_{odot}$ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass down-sizing effect on the population of Type III galaxies having recently experienced an enhanced inside-out growth.
Gas-phase abundances and abundance gradients provide much information on past stellar generations, and are powerful probes of how galaxies evolve. Gas abundance gradients in galaxies have been studied as functions of galaxies mass and size individual
ly, but have largely not been considered across the galaxy mass--size plane. Thus, we investigate gas-phase abundance gradients across this plane, using a sample of over 1000 galaxies selected from the MApping Nearby Galaxies at APO (MaNGA) spectroscopic survey. We find that gradients vary systematically such that above $10^{10}M_{odot}$, smaller galaxies display flatter gradients than larger galaxies at a given stellar mass. This mass--size behaviour cannot be explained by instrumental effects, nor is it simply a reflection of known trends between gradients and morphology. We explore multiple possibilities for a physical origin for this pattern, though further work is needed to establish a firm physical interpretation.
We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more tha
n 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed $Halpha$ emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into the account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.
In this work, we investigate the strength and impact of ionised gas outflows within $z sim 0.04$ MaNGA galaxies. We find evidence for outflows in 322 galaxies ($12%$ of the analysed line-emitting sample), 185 of which show evidence for AGN activity.
Most outflows are centrally concentrated with a spatial extent that scales sublinearly with $R_{rm e}$. The incidence of outflows is enhanced at higher masses, central surface densities and deeper gravitational potentials, as well as at higher SFR and AGN luminosity. We quantify strong correlations between mass outflow rates and the mechanical drivers of the outflow of the form $dot{M}_{rm out} propto rm SFR^{0.97}$ and $dot{M}_{rm out} propto L_{rm AGN}^{0.55}$. We derive a master scaling relation describing the mass outflow rate of ionised gas as a function of $M_{star}$, SFR, $R_{rm e}$ and $L_{rm AGN}$. Most of the observed winds are anticipated to act as galactic fountains, with the fraction of galaxies with escaping winds increasing with decreasing potential well depth. We further investigate the physical properties of the outflowing gas finding evidence for enhanced attenuation in the outflow, possibly due to metal-enriched winds, and higher excitation compared to the gas in the galactic disk. Given that the majority of previous studies have focused on more extreme systems with higher SFRs and/or more luminous AGN, our study provides a unique view of the non-gravitational gaseous motions within `typical galaxies in the low-redshift Universe, where low-luminosity AGN and star formation contribute jointly to the observed outflow phenomenology.
[abridged] We present optical integral field spectroscopy for a flux-limited sample of 19 QSOs at z<0.2 and spatially resolve their ionized gas properties at a physical resolution of 2-5kpc. The extended narrow line regions (ENLRs), photoionized by t
he radiation of AGN, have sizes of up to several kpc and correlate more strongly with the QSO continuum luminosity than with the integrated [OIII] luminosity. We find a relation of the form log(r)~(0.46+-0.04)log(L_5100), reinforcing the picture of an approximately constant ionization parameter for the ionized clouds across the ENLR. Besides the ENLR, we also find gas ionized by young massive stars in more than 50 per cent of the galaxies on kpc scales. In more than half of the sample, the specific star formation rates based on the extinction-corrected Ha luminosity are consistent with those of inactive disc-dominated galaxies, even for some bulge-dominated QSO hosts. Enhanced SFRs of up to 70Msun/yr are rare and always associated with signatures of major mergers. Comparison with the SFR based on the 60+100micron FIR luminosity suggests that the FIR luminosity is systematically contaminated by AGN emission and Ha appears to be a more robust and sensitive tracer for the star formation rate. Evidence for efficient AGN feedback is scarce in our sample, but some of our QSO hosts lack signatures of ongoing star formation leading to a reduced specific SFR with respect to the main sequence of galaxies. Based on 12 QSOs where we can make measurements, we find that on average bulge-dominated QSO host galaxies tend to fall below the mass-metallicity relation compared to their disc-dominated counterparts. While not yet statistically significant for our small sample, this may provide a useful diagnostic for future large surveys if this metal dilution can be shown to be linked to recent or ongoing galaxy interactions.
Jillian M. Scudder
,Sara L. Ellison
,Loubna El Meddah El Idrissi
.
(2021)
.
"Conversions between gas-phase metallicities in MaNGA"
.
Jillian M. Scudder
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا