ﻻ يوجد ملخص باللغة العربية
We study entrainment in dry thermals in neutrally and unstably stratified ambients, and moist thermals in dry-neutrally stratified ambients using direct numerical simulations (DNS). We find, in agreement with results of Lecoanet and Jeevanjee [1] that turbulence plays a minor role in entrainment in dry thermals in a neutral ambient for Reynolds numbers $Re < 10^4$ . We then show that the net entrainment rate increases when the buoyancy of the thermals increases, either by condensation heating or because of an unstably stratified ambient. This is in contrast with the findings of Morrison et al. [2]. We also show that the role of turbulence is greater in these cases than in dry thermals and, significantly, that the combined action of condensation heating and turbulence creates intense small scale vorticity, destroying the vortex ring that is seen in dry and moist laminar thermals. These findings suggest that fully resolved simulations at Reynolds numbers significantly larger than the mixing transition Reynolds number $Re = 10^4$ are necessary to understand the role of turbulence in the entrainment in growing cumulus clouds, which consist of a series of thermals rising and decaying in succession.
Spark plasma discharges induce vortex rings and a hot gas kernel. We develop a model to describe the late stage of the spark induced flow and the role of the vortex rings in the entrainment of cold ambient gas and the cooling of the hot gas kernel. T
We present experimental measurements of a wall-bounded gravity current, motivated by characterizing natural gravity currents such as oceanic overflows. We use particle image velocimetry and planar laser-induced fluorescence to simultaneously measure
Gravity currents modify their flow characteristics by entraining ambient fluid, which depends on a variety of governing parameters such as the initial density, $Delta rho$, the total initial height of the fluid, $H$, and the slope of the terrain, $al
The entrainment of air by advancing contact lines is studied by plunging a solid plate into a very viscous liquid. Above a threshold velocity, we observe the formation of an extended air film, typically 10 microns thick, which subsequently decays int
Dry lakes covered with a salt crust organised into beautifully patterned networks of narrow ridges are common in arid regions. Here, we consider the initial instability and the ultimate fate of buoyancy-driven convection that could lead to such patte