ترغب بنشر مسار تعليمي؟ اضغط هنا

Multimessenger NuEM Alerts with AMON

106   0   0.0 ( 0 )
 نشر من قبل Hugo Alberto Ayala Solares
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make up this channel and present a selection of recent results.



قيم البحث

اقرأ أيضاً

306 - M. W. E. Smith 2012
We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy , multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.
The Astrophysical Multimessenger Observatory Network (AMON) has been built with the purpose of enabling near real-time coincidence searches using data from leading multimessenger observatories and astronomical facilities. Its mission is to evoke disc overy of multimessenger astrophysical sources, exploit these sources for purposes of astrophysics and fundamental physics, and explore multimessenger datasets for evidence of multimessenger source population AMON aims to promote the advancement of multimessenger astrophysics by allowing its participants to study the most energetic phenomena in the universe and to help answer some of the outstanding enigmas in astrophysics, fundamental physics, and cosmology. The main strength of AMON is its ability to combine and analyze sub-threshold data from different facilities. Such data cannot generally be used stand-alone to identify astrophysical sources. The analyses algorithms used by AMON can identify statistically significant coincidence candidates of multimessenger events, leading to the distribution of AMON alerts used by partner observatories for real-time follow-up that may identify and, potentially, confirm the reality of the multimessenger association. We present the science motivation, partner observatories, implementation and summary of the current status of the AMON project.
The first two LIGO and Virgo observation runs have been important milestones in the gravitational wave (GW) field, thanks to the detection of GW signals from ten binary black hole systems and a binary neutron star system. In order to fully characteri ze the emitting source, the remnant object and its environment, electromagnetic follow-up observations at different wavelengths are essential, as learned from the GW170817/GRB170817A case. Given the quite large localization uncertainties provided by interferometers, the main challenge faced by facilities with a narrow field of view (e.g. Imaging Atmospheric Cherenkov Telescopes, IACTs) is to setup a suitable follow-up strategy in order to observe sky regions with the highest probability to host the electromagnetic (EM) counterpart of the GW signal. As member of the EM follow-up community, the MAGIC collaboration joined this effort in 2014. As the third observation run (O3) is currently ongoing, where both LIGO and Virgo are expected to have much better sensitivities, MAGIC is refining its follow-up strategy to maximize the chances of observing the EM counterparts as soon as possible. In this contribution we will describe this strategy, focusing on the different observation cases, which mainly depends on the information available from both GW and EM partner facilities.
The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis loo ks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of $<1$ coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of $<4$ coincidences per year.
In 2016, IceCube initiated a system of public real-time alerts that are typically issued within one minute, following the detection of a neutrino candidate event that is likely to be of astrophysical origin. The goal of these alerts is to enable mult i-messenger observations that may identify the neutrino source. Through January 31, 2019, a total of 20 public alerts have been issued, with many of them receiving follow-up observations across multiple wavelength bands. One alert in particular, IceCube-170922A, was found to be associated with a flaring gamma-ray blazar, TXS 0506+056. This was the first >3 sigma association of a high-energy neutrino with an electromagnetic counterpart. In 2019, the IceCube collaboration is introducing a new set of neutrino candidate selections that expand the alert program. These new selections provide two alert channels. A Gold channel will issue alerts for neutrino candidates at least 50% likely to be of astrophysical origin and is expected to deliver $sim$10 alerts per year. Additionally a more frequent Bronze channel will provide $sim$20 alerts per year for neutrino candidates that are between 30% and 50% likely to be of astrophysical origin. We present the neutrino event selections used to generate these alerts, the expected alert rates, and a description of the alert message.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا