ﻻ يوجد ملخص باللغة العربية
This paper presents a neural rendering method for controllable portrait video synthesis. Recent advances in volumetric neural rendering, such as neural radiance fields (NeRF), has enabled the photorealistic novel view synthesis of static scenes with impressive results. However, modeling dynamic and controllable objects as part of a scene with such scene representations is still challenging. In this work, we design a system that enables both novel view synthesis for portrait video, including the human subject and the scene background, and explicit control of the facial expressions through a low-dimensional expression representation. We leverage the expression space of a 3D morphable face model (3DMM) to represent the distribution of human facial expressions, and use it to condition the NeRF volumetric function. Furthermore, we impose a spatial prior brought by 3DMM fitting to guide the network to learn disentangled control for scene appearance and facial actions. We demonstrate the effectiveness of our method on free view synthesis of portrait videos with expression controls. To train a scene, our method only requires a short video of a subject captured by a mobile device.
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a ful
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model th
Generating high-fidelity talking head video by fitting with the input audio sequence is a challenging problem that receives considerable attentions recently. In this paper, we address this problem with the aid of neural scene representation networks.
The rendering procedure used by neural radiance fields (NeRF) samples a scene with a single ray per pixel and may therefore produce renderings that are excessively blurred or aliased when training or testing images observe scene content at different
We investigate the use of Neural Radiance Fields (NeRF) to learn high quality 3D object category models from collections of input images. In contrast to previous work, we are able to do this whilst simultaneously separating foreground objects from th