ﻻ يوجد ملخص باللغة العربية
We propose FlowSVDD -- a flow-based one-class classifier for anomaly/outliers detection that realizes a well-known SVDD principle using deep learning tools. Contrary to other approaches to deep SVDD, the proposed model is instantiated using flow-based models, which naturally prevents from collapsing of bounding hypersphere into a single point. Experiments show that FlowSVDD achieves comparable results to the current state-of-the-art methods and significantly outperforms related deep SVDD methods on benchmark datasets.
We propose OneFlow - a flow-based one-class classifier for anomaly (outliers) detection that finds a minimal volume bounding region. Contrary to density-based methods, OneFlow is constructed in such a way that its result typically does not depend on
The proliferation of web platforms has created incentives for online abuse. Many graph-based anomaly detection techniques are proposed to identify the suspicious accounts and behaviors. However, most of them detect the anomalies once the users have p
Anomaly detectors are often used to produce a ranked list of statistical anomalies, which are examined by human analysts in order to extract the actual anomalies of interest. Unfortunately, in realworld applications, this process can be exceedingly d
Anomaly detection is an important research problem because anomalies often contain critical insights for understanding the unusual behavior in data. One type of anomaly detection approach is dependency-based, which identifies anomalies by examining t
We address the problem of sequentially selecting and observing processes from a given set to find the anomalies among them. The decision-maker observes one process at a time and obtains a noisy binary indicator of whether or not the corresponding pro