ترغب بنشر مسار تعليمي؟ اضغط هنا

Flow-based SVDD for anomaly detection

98   0   0.0 ( 0 )
 نشر من قبل Marcin Sendera
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose FlowSVDD -- a flow-based one-class classifier for anomaly/outliers detection that realizes a well-known SVDD principle using deep learning tools. Contrary to other approaches to deep SVDD, the proposed model is instantiated using flow-based models, which naturally prevents from collapsing of bounding hypersphere into a single point. Experiments show that FlowSVDD achieves comparable results to the current state-of-the-art methods and significantly outperforms related deep SVDD methods on benchmark datasets.



قيم البحث

اقرأ أيضاً

We propose OneFlow - a flow-based one-class classifier for anomaly (outliers) detection that finds a minimal volume bounding region. Contrary to density-based methods, OneFlow is constructed in such a way that its result typically does not depend on the structure of outliers. This is caused by the fact that during training the gradient of the cost function is propagated only over the points located near to the decision boundary (behavior similar to the support vectors in SVM). The combination of flow models and Bernstein quantile estimator allows OneFlow to find a parametric form of bounding region, which can be useful in various applications including describing shapes from 3D point clouds. Experiments show that the proposed model outperforms related methods on real-world anomaly detection problems.
350 - Tong Zhao , Bo Ni , Wenhao Yu 2020
The proliferation of web platforms has created incentives for online abuse. Many graph-based anomaly detection techniques are proposed to identify the suspicious accounts and behaviors. However, most of them detect the anomalies once the users have p erformed many such behaviors. Their performance is substantially hindered when the users observed data is limited at an early stage, which needs to be improved to minimize financial loss. In this work, we propose Eland, a novel framework that uses action sequence augmentation for early anomaly detection. Eland utilizes a sequence predictor to predict next actions of every user and exploits the mutual enhancement between action sequence augmentation and user-action graph anomaly detection. Experiments on three real-world datasets show that Eland improves the performance of a variety of graph-based anomaly detection methods. With Eland, anomaly detection performance at an earlier stage is better than non-augmented methods that need significantly more observed data by up to 15% on the Area under the ROC curve.
Anomaly detectors are often used to produce a ranked list of statistical anomalies, which are examined by human analysts in order to extract the actual anomalies of interest. Unfortunately, in realworld applications, this process can be exceedingly d ifficult for the analyst since a large fraction of high-ranking anomalies are false positives and not interesting from the application perspective. In this paper, we aim to make the analysts job easier by allowing for analyst feedback during the investigation process. Ideally, the feedback influences the ranking of the anomaly detector in a way that reduces the number of false positives that must be examined before discovering the anomalies of interest. In particular, we introduce a novel technique for incorporating simple binary feedback into tree-based anomaly detectors. We focus on the Isolation Forest algorithm as a representative tree-based anomaly detector, and show that we can significantly improve its performance by incorporating feedback, when compared with the baseline algorithm that does not incorporate feedback. Our technique is simple and scales well as the size of the data increases, which makes it suitable for interactive discovery of anomalies in large datasets.
271 - Sha Lu , Lin Liu , Jiuyong Li 2020
Anomaly detection is an important research problem because anomalies often contain critical insights for understanding the unusual behavior in data. One type of anomaly detection approach is dependency-based, which identifies anomalies by examining t he violations of the normal dependency among variables. These methods can discover subtle and meaningful anomalies with better interpretation. Existing dependency-based methods adopt different implementations and show different strengths and weaknesses. However, the theoretical fundamentals and the general process behind them have not been well studied. This paper proposes a general framework, DepAD, to provide a unified process for dependency-based anomaly detection. DepAD decomposes unsupervised anomaly detection tasks into feature selection and prediction problems. Utilizing off-the-shelf techniques, the DepAD framework can have various instantiations to suit different application domains. Comprehensive experiments have been conducted over one hundred instantiated DepAD methods with 32 real-world datasets to evaluate the performance of representative techniques in DepAD. To show the effectiveness of DepAD, we compare two DepAD methods with nine state-of-the-art anomaly detection methods, and the results show that DepAD methods outperform comparison methods in most cases. Through the DepAD framework, this paper gives guidance and inspiration for future research of dependency-based anomaly detection and provides a benchmark for its evaluation.
We address the problem of sequentially selecting and observing processes from a given set to find the anomalies among them. The decision-maker observes one process at a time and obtains a noisy binary indicator of whether or not the corresponding pro cess is anomalous. In this setting, we develop an anomaly detection algorithm that chooses the process to be observed at a given time instant, decides when to stop taking observations, and makes a decision regarding the anomalous processes. The objective of the detection algorithm is to arrive at a decision with an accuracy exceeding a desired value while minimizing the delay in decision making. Our algorithm relies on a Markov decision process defined using the marginal probability of each process being normal or anomalous, conditioned on the observations. We implement the detection algorithm using the deep actor-critic reinforcement learning framework. Unlike prior work on this topic that has exponential complexity in the number of processes, our algorithm has computational and memory requirements that are both polynomial in the number of processes. We demonstrate the efficacy of our algorithm using numerical experiments by comparing it with the state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا