ﻻ يوجد ملخص باللغة العربية
In order to answer the open questions of modern cosmology and galaxy evolution theory, robust algorithms for calculating photometric redshifts (photo-z) for very large samples of galaxies are needed. Correct estimation of the various photo-z algorithms performance requires attention to both the performance metrics and the data used for the estimation. In this work, we use the supervised machine learning algorithm MLPQNA to calculate photometric redshifts for the galaxies in the COSMOS2015 catalogue and the unsupervised Self-Organizing Maps (SOM) to determine the reliability of the resulting estimates. We find that for spec-z<1.2, photo-z predictions are on the same level of quality as SED fitting photo-z. We show that the SOM successfully detects unreliable spec-z that cause biases in the estimation of the photo-z algorithms performance. Additionally, we use SOM to select the objects with reliable photo-z predictions. Our cleaning procedures allow to extract the subset of objects for which the quality of the final photo-z catalogs is improved by a factor of two, compared to the overall statistics.
Obtaining accurate photometric redshift estimations is an important aspect of cosmology, remaining a prerequisite of many analyses. In creating novel methods to produce redshift estimations, there has been a shift towards using machine learning techn
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscop
The advancement of technology has resulted in a rapid increase in supernova (SN) discoveries. The Subaru/Hyper Suprime-Cam (HSC) transient survey, conducted from fall 2016 through spring 2017, yielded 1824 SN candidates. This gave rise to the need fo
Photometric redshifts (photo-zs) provide an alternative way to estimate the distances of large samples of galaxies and are therefore crucial to a large variety of cosmological problems. Among the various methods proposed over the years, supervised ma
We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister and Lahav (2004), which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machin