ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving the reliability of photometric redshift with machine learning

197   0   0.0 ( 0 )
 نشر من قبل Oleksandra Razim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Oleksandra Razim




اسأل ChatGPT حول البحث

In order to answer the open questions of modern cosmology and galaxy evolution theory, robust algorithms for calculating photometric redshifts (photo-z) for very large samples of galaxies are needed. Correct estimation of the various photo-z algorithms performance requires attention to both the performance metrics and the data used for the estimation. In this work, we use the supervised machine learning algorithm MLPQNA to calculate photometric redshifts for the galaxies in the COSMOS2015 catalogue and the unsupervised Self-Organizing Maps (SOM) to determine the reliability of the resulting estimates. We find that for spec-z<1.2, photo-z predictions are on the same level of quality as SED fitting photo-z. We show that the SOM successfully detects unreliable spec-z that cause biases in the estimation of the photo-z algorithms performance. Additionally, we use SOM to select the objects with reliable photo-z predictions. Our cleaning procedures allow to extract the subset of objects for which the quality of the final photo-z catalogs is improved by a factor of two, compared to the overall statistics.



قيم البحث

اقرأ أيضاً

Obtaining accurate photometric redshift estimations is an important aspect of cosmology, remaining a prerequisite of many analyses. In creating novel methods to produce redshift estimations, there has been a shift towards using machine learning techn iques. However, there has not been as much of a focus on how well different machine learning methods scale or perform with the ever-increasing amounts of data being produced. Here, we introduce a benchmark designed to analyse the performance and scalability of different supervised machine learning methods for photometric redshift estimation. Making use of the Sloan Digital Sky Survey (SDSS - DR12) dataset, we analysed a variety of the most used machine learning algorithms. By scaling the number of galaxies used to train and test the algorithms up to one million, we obtained several metrics demonstrating the algorithms performance and scalability for this task. Furthermore, by introducing a new optimisation method, time-considered optimisation, we were able to demonstrate how a small concession of error can allow for a great improvement in efficiency. From the algorithms tested we found that the Random Forest performed best in terms of error with a mean squared error, MSE = 0.0042; however, as other algorithms such as Boosted Decision Trees and k-Nearest Neighbours performed incredibly similarly, we used our benchmarks to demonstrate how different algorithms could be superior in different scenarios. We believe benchmarks such as this will become even more vital with upcoming surveys, such as LSST, which will capture billions of galaxies requiring photometric redshifts.
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscop ic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieves an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.
The advancement of technology has resulted in a rapid increase in supernova (SN) discoveries. The Subaru/Hyper Suprime-Cam (HSC) transient survey, conducted from fall 2016 through spring 2017, yielded 1824 SN candidates. This gave rise to the need fo r fast type classification for spectroscopic follow-up and prompted us to develop a machine learning algorithm using a deep neural network (DNN) with highway layers. This machine is trained by actual observed cadence and filter combinations such that we can directly input the observed data array into the machine without any interpretation. We tested our model with a dataset from the LSST classification challenge (Deep Drilling Field). Our classifier scores an area under the curve (AUC) of 0.996 for binary classification (SN Ia or non-SN Ia) and 95.3% accuracy for three-class classification (SN Ia, SN Ibc, or SN II). Application of our binary classification to HSC transient data yields an AUC score of 0.925. With two weeks of HSC data since the first detection, this classifier achieves 78.1% accuracy for binary classification, and the accuracy increases to 84.2% with the full dataset. This paper discusses the potential use of machine learning for SN type classification purposes.
Photometric redshifts (photo-zs) provide an alternative way to estimate the distances of large samples of galaxies and are therefore crucial to a large variety of cosmological problems. Among the various methods proposed over the years, supervised ma chine learning (ML) methods capable to interpolate the knowledge gained by means of spectroscopical data have proven to be very effective. METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) is a novel method designed to provide a reliable PDF (Probability density Function) of the error distribution of photometric redshifts predicted by ML methods. The method is implemented as a modular workflow, whose internal engine for photo-z estimation makes use of the MLPQNA neural network (Multi Layer Perceptron with Quasi Newton learning rule), with the possibility to easily replace the specific machine learning model chosen to predict photo-zs. After a short description of the software, we present a summary of results on public galaxy data (Sloan Digital Sky Survey - Data Release 9) and a comparison with a completely different method based on Spectral Energy Distribution (SED) template fitting.
We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister and Lahav (2004), which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machin e learning methods, such as artificial neural networks and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included in the experiments first public data release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download at https://github.com/IftachSadeh/ANNZ .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا