We report on the study of phonon properties and electron-phonon coupling in thin NbTiN films, which are intensively exploited in superconducting devices. Studied NbTiN films with thicknesses less than 10~nm are disordered with respect to electron transport, the Ioffe-Regel parameter of $k_F l_e = 2.5-3.0$ ($k_F$ is the Fermi wave vector and $l_e$ is the electron mean free path), and inelastic electron-phonon interaction, the product $q_T l_e ll 1$ ($q_T$ is the wave vector of a thermal phonon). By means of magnetoconductance and photoresponse techniques, we derived the inelastic electron-phonon scattering rate $1/tau_{e-ph}$ and determined sound velocities and phonon heat capacities. In the temperature range from 12 to 20~K, the scattering rate varies with temperature as $1/tau_{e-ph}propto T^{3.45pm0.05}$; its value extrapolated to 10~K amounts to approximately 16~ps. Making a comparative analysis of our films and other films used in superconducting devices, such as polycrystalline granular NbN and amorphous WSi, we found a systematic reduction of the sound velocity in all these films by about 50% as compared to the corresponding bulk crystalline materials. A corresponding increase in the phonon heat capacities in all these films is, however, less than the Debye model predicts. We attribute these findings to reduced film dimensionality and film morphology.