ترغب بنشر مسار تعليمي؟ اضغط هنا

MSTC*:Multi-robot Coverage Path Planning under Physical Constraints

178   0   0.0 ( 0 )
 نشر من قبل Jing Tao Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For large-scale tasks, coverage path planning (CPP) can benefit greatly from multiple robots. In this paper, we present an efficient algorithm MSTC* for multi-robot coverage path planning (mCPP) based on spiral spanning tree coverage (Spiral-STC). Our algorithm incorporates strict physical constraints like terrain traversability and material load capacity. We compare our algorithm against the state-of-the-art in mCPP for regular grid maps and real field terrains in simulation environments. The experimental results show that our method significantly outperforms existing spiral-STC based mCPP methods. Our algorithm can find a set of well-balanced workload distributions for all robots and therefore, achieve the overall minimum time to complete the coverage.



قيم البحث

اقرأ أيضاً

This paper presents a novel multi-robot coverage path planning (CPP) algorithm - aka SCoPP - that provides a time-efficient solution, with workload balanced plans for each robot in a multi-robot system, based on their initial states. This algorithm a ccounts for discontinuities (e.g., no-fly zones) in a specified area of interest, and provides an optimized ordered list of way-points per robot using a discrete, computationally efficient, nearest neighbor path planning algorithm. This algorithm involves five main stages, which include the transformation of the users input as a set of vertices in geographical coordinates, discretization, load-balanced partitioning, auctioning of conflict cells in a discretized space, and a path planning procedure. To evaluate the effectiveness of the primary algorithm, a multi-unmanned aerial vehicle (UAV) post-flood assessment application is considered, and the performance of the algorithm is tested on three test maps of varying sizes. Additionally, our method is compared with a state-of-the-art method created by Guasella et al. Further analyses on scalability and computational time of SCoPP are conducted. The results show that SCoPP is superior in terms of mission completion time; its computing time is found to be under 2 mins for a large map covered by a 150-robot team, thereby demonstrating its computationally scalability.
This paper presents a deep-learning based CPP algorithm, called Coverage Path Planning Network (CPPNet). CPPNet is built using a convolutional neural network (CNN) whose input is a graph-based representation of the occupancy grid map while its output is an edge probability heat graph, where the value of each edge is the probability of belonging to the optimal TSP tour. Finally, a greedy search is used to select the final optimized tour. CPPNet is trained and comparatively evaluated against the TSP tour. It is shown that CPPNet provides near-optimal solutions while requiring significantly less computational time, thus enabling real-time coverage path planning in partially unknown and dynamic environments.
We propose an approach to solve multi-agent path planning (MPP) problems for complex environments. Our method first designs a special pebble graph with a set of feasibility constraints, under which MPP problems have feasibility guarantee. We further propose an algorithm to greedily improve the optimality of planned MPP solutions via parallel pebble motions. As a second step, we develop a mesh optimization algorithm to embed our pebble graph into arbitrarily complex environments. We show that the feasibility constraints of a pebble graph can be converted into differentiable geometric constraints, such that our mesh optimizer can satisfy these constraints via constrained numerical optimization. We have evaluated the effectiveness and efficiency of our method using a set of environments with complex geometries, on which our method achieves an average of 99.0% free-space coverage and 30.3% robot density within hours of computation on a desktop machine.
The problem of constrained coverage path planning involves a robot trying to cover maximum area of an environment under some constraints that appear as obstacles in the map. Out of the several coverage path planning methods, we consider augmenting th e linear sweep-based coverage method to achieve minimum energy/ time optimality along with maximum area coverage. In addition, we also study the effects of variation of different parameters on the performance of the modified method.
We study optimal Multi-robot Path Planning (MPP) on graphs, in order to improve the efficiency of multi-robot system (MRS) in the warehouse-like environment. We propose a novel algorithm, OMRPP (One-way Multi-robot Path Planning) based on Integer pro gramming (IP) method. We focus on reducing the cost caused by a set of robots moving from their initial configuration to goal configuration in the warehouse-like environment. The novelty of this work includes: (1) proposing a topological map extraction based on the property of warehouse-like environment to reduce the scale of constructed IP model; (2) proposing one-way passage constraint to prevent the robots from having unsolvable collisions in the passage. (3) developing a heuristic architecture that IP model can always have feasible initial solution to ensure its solvability. Numerous simulations demonstrate the efficiency and performance of the proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا