ﻻ يوجد ملخص باللغة العربية
We combine ab initio simulations and Raman scattering measurements to demonstrate explicit anharmonic effects in the temperature dependent dielectric response of a NaCl single crystal. We measure the temperature evolution of its Raman spectrum and compare it to both a quasi-harmonic and anharmonic model. Results demonstrate the necessity of including anharmonic lattice dynamics to explain the dielectric response of NaCl, as it is manifested in Raman scattering. Our model fully captures the linear dielectric response of a crystal at finite temperatures and may therefore be used to calculate the temperature dependence of other material properties governed by it.
According to Vegards law, larger radius atoms substitute for smaller atoms in a solid solution would enlarge the lattice parameters. However, by first-principles calculations, we have observed unusual lattice shrinkage when W replaces Ge in rock salt
Finite temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees
The equation of state, structural behavior and phase stability of {alpha}-uranium have been investigated up to 1.3 TPa using density functional theory, adopting a simple description of electronic structure that neglects the spin-orbit coupling and st
Gallium nitride (GaN) is a key semiconductor for solid-state lighting, but its radiative processes are not fully understood. Here we show a first-principles approach to accurately compute the radiative lifetimes in bulk uniaxial crystals, focusing on
Accurate molecular crystal structure prediction is a fundamental goal in academic and industrial condensed matter research and polymorphism is arguably the biggest obstacle on the way. We tackle this challenge in the difficult case of the repeatedly