ﻻ يوجد ملخص باللغة العربية
Code representation learning, which aims to encode the semantics of source code into distributed vectors, plays an important role in recent deep-learning-based models for code intelligence. Recently, many pre-trained language models for source code (e.g., CuBERT and CodeBERT) have been proposed to model the context of code and serve as a basis for downstream code intelligence tasks such as code search, code clone detection, and program translation. Current approaches typically consider the source code as a plain sequence of tokens, or inject the structure information (e.g., AST and data-flow) into the sequential model pre-training. To further explore the properties of programming languages, this paper proposes SynCoBERT, a syntax-guided multi-modal contrastive pre-training approach for better code representations. Specially, we design two novel pre-training objectives originating from the symbolic and syntactic properties of source code, i.e., Identifier Prediction (IP) and AST Edge Prediction (TEP), which are designed to predict identifiers, and edges between two nodes of AST, respectively. Meanwhile, to exploit the complementary information in semantically equivalent modalities (i.e., code, comment, AST) of the code, we propose a multi-modal contrastive learning strategy to maximize the mutual information among different modalities. Extensive experiments on four downstream tasks related to code intelligence show that SynCoBERT advances the state-of-the-art with the same pre-training corpus and model size.
Recent work learns contextual representations of source code by reconstructing tokens from their context. For downstream semantic understanding tasks like summarizing code in English, these representations should ideally capture program functionality
Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts and getting rid of the noises is es
Recent developments in Natural Language Processing (NLP) demonstrate that large-scale, self-supervised pre-training can be extremely beneficial for downstream tasks. These ideas have been adapted to other domains, including the analysis of the amino
Pre-training of text and layout has proved effective in a variety of visually-rich document understanding tasks due to its effective model architecture and the advantage of large-scale unlabeled scanned/digital-born documents. In this paper, we prese
Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-sup