ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-domain Collaborative Feature Representation for Robust Visual Object Tracking

99   0   0.0 ( 0 )
 نشر من قبل Jiqing Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Jointly exploiting multiple different yet complementary domain information has been proven to be an effective way to perform robust object tracking. This paper focuses on effectively representing and utilizing complementary features from the frame domain and event domain for boosting object tracking performance in challenge scenarios. Specifically, we propose Common Features Extractor (CFE) to learn potential common representations from the RGB domain and event domain. For learning the unique features of the two domains, we utilize a Unique Extractor for Event (UEE) based on Spiking Neural Networks to extract edge cues in the event domain which may be missed in RGB in some challenging conditions, and a Unique Extractor for RGB (UER) based on Deep Convolutional Neural Networks to extract texture and semantic information in RGB domain. Extensive experiments on standard RGB benchmark and real event tracking dataset demonstrate the effectiveness of the proposed approach. We show our approach outperforms all compared state-of-the-art tracking algorithms and verify event-based data is a powerful cue for tracking in challenging scenes.



قيم البحث

اقرأ أيضاً

We propose a new Group Feature Selection method for Discriminative Correlation Filters (GFS-DCF) based visual object tracking. The key innovation of the proposed method is to perform group feature selection across both channel and spatial dimensions, thus to pinpoint the structural relevance of multi-channel features to the filtering system. In contrast to the widely used spatial regularisation or feature selection methods, to the best of our knowledge, this is the first time that channel selection has been advocated for DCF-based tracking. We demonstrate that our GFS-DCF method is able to significantly improve the performance of a DCF tracker equipped with deep neural network features. In addition, our GFS-DCF enables joint feature selection and filter learning, achieving enhanced discrimination and interpretability of the learned filters. To further improve the performance, we adaptively integrate historical information by constraining filters to be smooth across temporal frames, using an efficient low-rank approximation. By design, specific temporal-spatial-channel configurations are dynamically learned in the tracking process, highlighting the relevant features, and alleviating the performance degrading impact of less discriminative representations and reducing information redundancy. The experimental results obtained on OTB2013, OTB2015, VOT2017, VOT2018 and TrackingNet demonstrate the merits of our GFS-DCF and its superiority over the state-of-the-art trackers. The code is publicly available at https://github.com/XU-TIANYANG/GFS-DCF.
Multi-sensor perception is crucial to ensure the reliability and accuracy in autonomous driving system, while multi-object tracking (MOT) improves that by tracing sequential movement of dynamic objects. Most current approaches for multi-sensor multi- object tracking are either lack of reliability by tightly relying on a single input source (e.g., center camera), or not accurate enough by fusing the results from multiple sensors in post processing without fully exploiting the inherent information. In this study, we design a generic sensor-agnostic multi-modality MOT framework (mmMOT), where each modality (i.e., sensors) is capable of performing its role independently to preserve reliability, and further improving its accuracy through a novel multi-modality fusion module. Our mmMOT can be trained in an end-to-end manner, enables joint optimization for the base feature extractor of each modality and an adjacency estimator for cross modality. Our mmMOT also makes the first attempt to encode deep representation of point cloud in data association process in MOT. We conduct extensive experiments to evaluate the effectiveness of the proposed framework on the challenging KITTI benchmark and report state-of-the-art performance. Code and models are available at https://github.com/ZwwWayne/mmMOT.
Online updating of the object model via samples from historical frames is of great importance for accurate visual object tracking. Recent works mainly focus on constructing effective and efficient updating methods while neglecting the training sample s for learning discriminative object models, which is also a key part of a learning problem. In this paper, we propose the DeepMix that takes historical samples embeddings as input and generates augmented embeddings online, enhancing the state-of-the-art online learning methods for visual object tracking. More specifically, we first propose the online data augmentation for tracking that online augments the historical samples through object-aware filtering. Then, we propose MixNet which is an offline trained network for performing online data augmentation within one-step, enhancing the tracking accuracy while preserving high speeds of the state-of-the-art online learning methods. The extensive experiments on three different tracking frameworks, i.e., DiMP, DSiam, and SiamRPN++, and three large-scale and challenging datasets, ie, OTB-2015, LaSOT, and VOT, demonstrate the effectiveness and advantages of the proposed method.
The deep learning-based visual tracking algorithms such as MDNet achieve high performance leveraging to the feature extraction ability of a deep neural network. However, the tracking efficiency of these trackers is not very high due to the slow featu re extraction for each frame in a video. In this paper, we propose an effective tracking algorithm to alleviate the time-consuming problem. Specifically, we design a deep flow collaborative network, which executes the expensive feature network only on sparse keyframes and transfers the feature maps to other frames via optical flow. Moreover, we raise an effective adaptive keyframe scheduling mechanism to select the most appropriate keyframe. We evaluate the proposed approach on large-scale datasets: OTB2013 and OTB2015. The experiment results show that our algorithm achieves considerable speedup and high precision as well.
Physical processes, camera movement, and unpredictable environmental conditions like the presence of dust can induce noise and artifacts in video feeds. We observe that popular unsupervised MOT methods are dependent on noise-free inputs. We show that the addition of a small amount of artificial random noise causes a sharp degradation in model performance on benchmark metrics. We resolve this problem by introducing a robust unsupervised multi-object tracking (MOT) model: AttU-Net. The proposed single-head attention model helps limit the negative impact of noise by learning visual representations at different segment scales. AttU-Net shows better unsupervised MOT tracking performance over variational inference-based state-of-the-art baselines. We evaluate our method in the MNIST-MOT and the Atari game video benchmark. We also provide two extended video datasets: ``Kuzushiji-MNIST MOT which consists of moving Japanese characters and ``Fashion-MNIST MOT to validate the effectiveness of the MOT models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا