Diabetes is one of the most prevalent chronic diseases in Bangladesh, and as a result, Diabetic Retinopathy (DR) is widespread in the population. DR, an eye illness caused by diabetes, can lead to blindness if it is not identified and treated in its early stages. Unfortunately, diagnosis of DR requires medically trained professionals, but Bangladesh has limited specialists in comparison to its population. Moreover, the screening process is often expensive, prohibiting many from receiving timely and proper diagnosis. To address the problem, we introduce a deep learning algorithm which screens for different stages of DR. We use a state-of-the-art CNN architecture to diagnose patients based on retinal fundus imagery. This paper is an experimental evaluation of the algorithm we developed for DR diagnosis and screening specifically for Bangladeshi patients. We perform this validation study using separate pools of retinal image data of real patients from a hospital and field studies in Bangladesh. Our results show that the algorithm is effective at screening Bangladeshi eyes even when trained on a public dataset which is out of domain, and can accurately determine the stage of DR as well, achieving an overall accuracy of 92.27% and 93.02% on two validation sets of Bangladeshi eyes. The results confirm the ability of the algorithm to be used in real clinical settings and applications due to its high accuracy and classwise metrics. Our algorithm is implemented in the application Drishti, which is used to screen for DR in patients living in rural areas in Bangladesh, where access to professional screening is limited.