ﻻ يوجد ملخص باللغة العربية
Ultrasound is a non-invasive imaging modality that can be conveniently used to classify suspicious breast nodules and potentially detect the onset of breast cancer. Recently, Convolutional Neural Networks (CNN) techniques have shown promising results in classifying ultrasound images of the breast into benign or malignant. However, CNN inference acts as a black-box model, and as such, its decision-making is not interpretable. Therefore, increasing effort has been dedicated to explaining this process, most notably through GRAD-CAM and other techniques that provide visual explanations into inner workings of CNNs. In addition to interpretation, these methods provide clinically important information, such as identifying the location for biopsy or treatment. In this work, we analyze how adversarial assaults that are practically undetectable may be devised to alter these importance maps dramatically. Furthermore, we will show that this change in the importance maps can come with or without altering the classification result, rendering them even harder to detect. As such, care must be taken when using these importance maps to shed light on the inner workings of deep learning. Finally, we utilize Multi-Task Learning (MTL) and propose a new network based on ResNet-50 to improve the classification accuracies. Our sensitivity and specificity is comparable to the state of the art results.
Ultrasound (US) is one of the most commonly used imaging modalities in both diagnosis and surgical interventions due to its low-cost, safety, and non-invasive characteristic. US image segmentation is currently a unique challenge because of the presen
Automatic breast lesion segmentation in ultrasound helps to diagnose breast cancer, which is one of the dreadful diseases that affect women globally. Segmenting breast regions accurately from ultrasound image is a challenging task due to the inherent
Breast cancer is the most common invasive cancer in women, and the second main cause of death. Breast cancer screening is an efficient method to detect indeterminate breast lesions early. The common approaches of screening for women are tomosynthesis
Ultrasound image diagnosis of breast tumors has been widely used in recent years. However, there are some problems of it, for instance, poor quality, intense noise and uneven echo distribution, which has created a huge obstacle to diagnosis. To overc
This paper introduces stochastic sparse adversarial attacks (SSAA), simple, fast and purely noise-based targeted and untargeted $L_0$ attacks of neural network classifiers (NNC). SSAA are devised by exploiting a simple small-time expansion idea widel