ﻻ يوجد ملخص باللغة العربية
Tuberculosis is an infectious disease that is leading to the death of millions of people across the world. The mortality rate of this disease is high in patients suffering from immuno-compromised disorders. The early diagnosis of this disease can save lives and can avoid further complications. But the diagnosis of TB is a very complex task. The standard diagnostic tests still rely on traditional procedures developed in the last century. These procedures are slow and expensive. So this paper presents an automatic approach for the diagnosis of TB from posteroanterior chest x-rays. This is a two-step approach, where in the first step the lung regions are segmented from the chest x-rays using the graph cut method, and then in the second step the transfer learning of VGG16 combined with Bi-directional LSTM is used for extracting high-level discriminative features from the segmented lung regions and then classification is performed using a fully connected layer. The proposed model is evaluated using data from two publicly available databases namely Montgomery Country set and Schezien set. The proposed model achieved accuracy and sensitivity of 97.76%, 97.01% and 96.42%, 94.11% on Schezien and Montgomery county datasets. This model enhanced the diagnostic accuracy of TB by 0.7% and 11.68% on Schezien and Montgomery county datasets.
Tuberculosis (TB) is a chronic lung disease that occurs due to bacterial infection and is one of the top 10 leading causes of death. Accurate and early detection of TB is very important, otherwise, it could be life-threatening. In this work, we have
The use of smartphones to take photographs of chest x-rays represents an appealing solution for scaled deployment of deep learning models for chest x-ray interpretation. However, the performance of chest x-ray algorithms on photos of chest x-rays has
Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper
Recent advances in training deep learning models have demonstrated the potential to provide accurate chest X-ray interpretation and increase access to radiology expertise. However, poor generalization due to data distribution shifts in clinical setti
The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has led to a global emergency that has significantly impacted economies, healthcare systems and personal wellbeing all around the world. Controlling the