Hierarchical triple stars are ideal laboratories for studying the interplay between orbital dynamics and stellar evolution. Both stellar wind mass loss and three-body dynamics cooperate to destabilise triples, which can lead to a variety of astrophysical exotica. So far our understanding of their evolution was mainly built upon results from extensive binary-single scattering experiments. Starting from generic initial conditions, we evolve an extensive set of hierarchical triples using a combination of the triple evolution code TRES and an N-body code. We find that the majority of triples preserve their hierarchy throughout their evolution, which is in contradiction with the commonly adopted picture that unstable triples always experience a chaotic, democratic resonant interaction. The duration of the unstable phase is much longer than expected, so that stellar evolution cannot be neglected. Typically an unstable triple dissolve into a single star and a binary; sometimes democratically (the initial hierarchy is lost and the lightest body usually escapes), but also in a hierarchical way (the tertiary is ejected in a slingshot, independent of its mass). Collisions are common, and mostly involve the two original inner binary components still on the main-sequence. This contradicts the idea that collisions with a giant during democratic encounters dominate. Together with collisions in stable triples, we find that triple evolution is the dominant mechanism for stellar collisions in the Milky Way. Furthermore, our simulations produce runaway and walk-away stars with speeds up to several tens km/s, with a maximum of a few 100km/s. We suggest that destabilised triples can alleviate the tension behind the origin of the observed run-away stars. Lastly, we present a promising indicator to make general predictions for the fate of a specific triple, based on the initial inclination of the system.