ﻻ يوجد ملخص باللغة العربية
Distinguishing the dynamics of an Anderson insulator from a Many-Body Localized (MBL) phase is an experimentally challenging task. In this work, we propose a method based on machine learning techniques to analyze experimental snapshot data to separate the two phases. We show how to train $3D$ convolutional neural networks (CNNs) using space-time Fock-state snapshots, allowing us to obtain dynamic information about the system. We benchmark our method on a paradigmatic model showing MBL ($t-V$ model with quenched disorder), where we obtain a classification accuracy of $approx 80 %$ between an Anderson insulator and an MBL phase. We underline the importance of providing temporal information to the CNNs and we show that CNNs learn the crucial difference between an Anderson localized and an MBL phase, namely the difference in the propagation of quantum correlations. Particularly, we show that the misclassified MBL samples are characterized by an unusually slow propagation of quantum correlations, and thus the CNNs label them wrongly as Anderson localized. Finally, we apply our method to the case with quasi-periodic potential, known as the Aubry-Andre model (AA model). We find that the CNNs have more difficulties in separating the two phases. We show that these difficulties are due to the fact that the MBL phase of the AA model is characterized by a slower information propagation for numerically accessible system sizes.
Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization. While the MBL phase is robust to weak local perturbations, the fate of an MBL system coupled to a thermalizing quantum system that represents a heat
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state
The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the
In this work, we investigate how the critical driving amplitude at the Floquet MBL-to-ergodic phase transition differs between smooth and non-smooth driving over a wide range of driving frequencies. To this end, we study numerically a disordered spin
We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. To this end we devise a heuristic way of constructing local integrals of motion of very high quality, which are added