ﻻ يوجد ملخص باللغة العربية
Open set recognition is designed to identify known classes and to reject unknown classes simultaneously. Specifically, identifying known classes and rejecting unknown classes correspond to reducing the empirical risk and the open space risk, respectively. First, the motorial prototype framework (MPF) is proposed, which classifies known classes according to the prototype classification idea. Moreover, a motorial margin constraint term is added into the loss function of the MPF, which can further improve the clustering compactness of known classes in the feature space to reduce both risks. Second, this paper proposes the adversarial motorial prototype framework (AMPF) based on the MPF. On the one hand, this model can generate adversarial samples and add these samples into the training phase; on the other hand, it can further improve the differential mapping ability of the model to known and unknown classes with the adversarial motion of the margin constraint radius. Finally, this paper proposes an upgraded version of the AMPF, AMPF++, which adds much more generated unknown samples into the training phase. In this paper, a large number of experiments prove that the performance of the proposed models is superior to that of other current works.
Open set recognition (OSR), aiming to simultaneously classify the seen classes and identify the unseen classes as unknown, is essential for reliable machine learning.The key challenge of OSR is how to reduce the empirical classification risk on the l
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that
In this work, we aim to address the challenging task of open set recognition (OSR). Many recent OSR methods rely on auto-encoders to extract class-specific features by a reconstruction strategy, requiring the network to restore the input image on pix
In recent years, the performance of action recognition has been significantly improved with the help of deep neural networks. Most of the existing action recognition works hold the textit{closed-set} assumption that all action categories are known be
Face recognition has been one of the most relevant and explored fields of Biometrics. In real-world applications, face recognition methods usually must deal with scenarios where not all probe individuals were seen during the training phase (open-set