ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving Large-Scale Multi-Objective Optimization via Probabilistic Prediction Model

508   0   0.0 ( 0 )
 نشر من قبل Haokai Hong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The main feature of large-scale multi-objective optimization problems (LSMOP) is to optimize multiple conflicting objectives while considering thousands of decision variables at the same time. An efficient LSMOP algorithm should have the ability to escape the local optimal solution from the huge search space and find the global optimal. Most of the current researches focus on how to deal with decision variables. However, due to the large number of decision variables, it is easy to lead to high computational cost. Maintaining the diversity of the population is one of the effective ways to improve search efficiency. In this paper, we propose a probabilistic prediction model based on trend prediction model and generating-filtering strategy, called LT-PPM, to tackle the LSMOP. The proposed method enhances the diversity of the population through importance sampling. At the same time, due to the adoption of an individual-based evolution mechanism, the computational cost of the proposed method is independent of the number of decision variables, thus avoiding the problem of exponential growth of the search space. We compared the proposed algorithm with several state-of-the-art algorithms for different benchmark functions. The experimental results and complexity analysis have demonstrated that the proposed algorithm has significant improvement in terms of its performance and computational efficiency in large-scale multi-objective optimization.



قيم البحث

اقرأ أيضاً

Large-scale multiobjective optimization problems (LSMOPs) are characterized as involving hundreds or even thousands of decision variables and multiple conflicting objectives. An excellent algorithm for solving LSMOPs should find Pareto-optimal soluti ons with diversity and escape from local optima in the large-scale search space. Previous research has shown that these optimal solutions are uniformly distributed on the manifold structure in the low-dimensional space. However, traditional evolutionary algorithms for solving LSMOPs have some deficiencies in dealing with this structural manifold, resulting in poor diversity, local optima, and inefficient searches. In this work, a generative adversarial network (GAN)-based manifold interpolation framework is proposed to learn the manifold and generate high-quality solutions on this manifold, thereby improving the performance of evolutionary algorithms. We compare the proposed algorithm with several state-of-the-art algorithms on large-scale multiobjective benchmark functions. Experimental results have demonstrated the significant improvements achieved by this framework in solving LSMOPs.
107 - Weizhen Hu , Min Jiang , Xing Gao 2019
The main feature of the Dynamic Multi-objective Optimization Problems (DMOPs) is that optimization objective functions will change with times or environments. One of the promising approaches for solving the DMOPs is reusing the obtained Pareto optima l set (POS) to train prediction models via machine learning approaches. In this paper, we train an Incremental Support Vector Machine (ISVM) classifier with the past POS, and then the solutions of the DMOP we want to solve at the next moment are filtered through the trained ISVM classifier. A high-quality initial population will be generated by the ISVM classifier, and a variety of different types of population-based dynamic multi-objective optimization algorithms can benefit from the population. To verify this idea, we incorporate the proposed approach into three evolutionary algorithms, the multi-objective particle swarm optimization(MOPSO), Nondominated Sorting Genetic Algorithm II (NSGA-II), and the Regularity Model-based multi-objective estimation of distribution algorithm(RE-MEDA). We employ experiments to test these algorithms, and experimental results show the effectiveness.
Dynamic multi-objective optimization problems (DMOPs) remain a challenge to be settled, because of conflicting objective functions change over time. In recent years, transfer learning has been proven to be a kind of effective approach in solving DMOP s. In this paper, a novel transfer learning based dynamic multi-objective optimization algorithm (DMOA) is proposed called regression transfer learning prediction based DMOA (RTLP-DMOA). The algorithm aims to generate an excellent initial population to accelerate the evolutionary process and improve the evolutionary performance in solving DMOPs. When an environmental change is detected, a regression transfer learning prediction model is constructed by reusing the historical population, which can predict objective values. Then, with the assistance of this prediction model, some high-quality solutions with better predicted objective values are selected as the initial population, which can improve the performance of the evolutionary process. We compare the proposed algorithm with three state-of-the-art algorithms on benchmark functions. Experimental results indicate that the proposed algorithm can significantly enhance the performance of static multi-objective optimization algorithms and is competitive in convergence and diversity.
Recently, more and more works have proposed to drive evolutionary algorithms using machine learning models.Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models.Since it usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality.To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs).At each generation of the proposed algorithm, the parent solutions are first classified into emph{real} and emph{fake} samples to train the GANs; then the offspring solutions are sampled by the trained GANs.Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data.The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables.Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
Mixed-precision quantization is a powerful tool to enable memory and compute savings of neural network workloads by deploying different sets of bit-width precisions on separate compute operations. Recent research has shown significant progress in app lying mixed-precision quantization techniques to reduce the memory footprint of various workloads, while also preserving task performance. Prior work, however, has often ignored additional objectives, such as bit-operations, that are important for deployment of workloads on hardware. Here we present a flexible and scalable framework for automated mixed-precision quantization that optimizes multiple objectives. Our framework relies on Neuroevolution-Enhanced Multi-Objective Optimization (NEMO), a novel search method, to find Pareto optimal mixed-precision configurations for memory and bit-operations objectives. Within NEMO, a population is divided into structurally distinct sub-populations (species) which jointly form the Pareto frontier of solutions for the multi-objective problem. At each generation, species are re-sized in proportion to the goodness of their contribution to the Pareto frontier. This allows NEMO to leverage established search techniques and neuroevolution methods to continually improve the goodness of the Pareto frontier. In our experiments we apply a graph-based representation to describe the underlying workload, enabling us to deploy graph neural networks trained by NEMO to find Pareto optimal configurations for various workloads trained on ImageNet. Compared to the state-of-the-art, we achieve competitive results on memory compression and superior results for compute compression for MobileNet-V2, ResNet50 and ResNeXt-101-32x8d. A deeper analysis of the results obtained by NEMO also shows that both the graph representation and the species-based approach are critical in finding effective configurations for all workloads.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا