ترغب بنشر مسار تعليمي؟ اضغط هنا

Co-learning: Learning from Noisy Labels with Self-supervision

72   0   0.0 ( 0 )
 نشر من قبل Cheng Tan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Noisy labels, resulting from mistakes in manual labeling or webly data collecting for supervised learning, can cause neural networks to overfit the misleading information and degrade the generalization performance. Self-supervised learning works in the absence of labels and thus eliminates the negative impact of noisy labels. Motivated by co-training with both supervised learning view and self-supervised learning view, we propose a simple yet effective method called Co-learning for learning with noisy labels. Co-learning performs supervised learning and self-supervised learning in a cooperative way. The constraints of intrinsic similarity with the self-supervised module and the structural similarity with the noisily-supervised module are imposed on a shared common feature encoder to regularize the network to maximize the agreement between the two constraints. Co-learning is compared with peer methods on corrupted data from benchmark datasets fairly, and extensive results are provided which demonstrate that Co-learning is superior to many state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

Reinforcement learning has achieved great success in various applications. To learn an effective policy for the agent, it usually requires a huge amount of data by interacting with the environment, which could be computational costly and time consumi ng. To overcome this challenge, the framework called Reinforcement Learning with Expert Demonstrations (RLED) was proposed to exploit the supervision from expert demonstrations. Although the RLED methods can reduce the number of learning iterations, they usually assume the demonstrations are perfect, and thus may be seriously misled by the noisy demonstrations in real applications. In this paper, we propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations. Specifically, for each step of the demonstration trajectory, we form an instance, and define a joint loss function to simultaneously maximize the expected reward and minimize the difference between agent behaviors and demonstrations. Most importantly, by calculating the expected gain of the value function, we assign each instance with a weight to estimate its potential utility, and thus can emphasize the more helpful demonstrations while filter out noisy ones. Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations, and achieve higher performance in fewer iterations.
Interactive learning is a process in which a machine learning algorithm is provided with meaningful, well-chosen examples as opposed to randomly chosen examples typical in standard supervised learning. In this paper, we propose a new method for inter active learning from multiple noisy labels where we exploit the disagreement among annotators to quantify the easiness (or meaningfulness) of an example. We demonstrate the usefulness of this method in estimating the parameters of a latent variable classification model, and conduct experimental analyses on a range of synthetic and benchmark datasets. Furthermore, we theoretically analyze the performance of perceptron in this interactive learning framework.
Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classificati on or recommendation can involve tagging or classification based on multiple criteria. In our case, we train face recognition systems for actors identification with a closed set of identities while being exposed to a significant number of perturbators (actors unknown to our database). Face classifiers are known to be sensitive to label noise. We review recent works on how to manage noisy annotations when training deep learning classifiers, independently from our interest in face recognition.
Learning with curriculum has shown great effectiveness in tasks where the data contains noisy (corrupted) labels, since the curriculum can be used to re-weight or filter out noisy samples via proper design. However, obtaining curriculum from a learne r itself without additional supervision or feedback deteriorates the effectiveness due to sample selection bias. Therefore, methods that involve two or more networks have been recently proposed to mitigate such bias. Nevertheless, these studies utilize the collaboration between networks in a way that either emphasizes the disagreement or focuses on the agreement while ignores the other. In this paper, we study the underlying mechanism of how disagreement and agreement between networks can help reduce the noise in gradients and develop a novel framework called Robust Collaborative Learning (RCL) that leverages both disagreement and agreement among networks. We demonstrate the effectiveness of RCL on both synthetic benchmark image data and real-world large-scale bioinformatics data.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا