ﻻ يوجد ملخص باللغة العربية
The mass spectra of all-charm tetraquark states with the [cc][$bar{c}bar{c}$] quark configuration are investigated. The coulomb plus linear potential is used in conjunction with the relativistic mass correction term $mathcal{O}(frac{1}{m})$. To determine the fitting parameters for all-charm tetraquarks states [cc][$bar{c}bar{c}$], we first calculate the mass spectra of charmonia [c$bar{c}$] and its decay constants ($f^{2}_{P/V}$). We estimated the masses of the tetraquark states in their ground and radially excited states. For mass spectra of tetraquark states, we also included spin-spin, spin-orbital, and tensor interactions. The mass spectra of charmonia produced in this study are reasonably consistent with experimental and theoretical predictions made by others, whilst the mass spectra of the tetraquark states are consistent with previous theoretical predictions. We propose that the X(6900) state, which has a mass range of 6.2 - 6.9 GeV and was recently detected by LHCb, has the quantum numbers $0^{-+}$, $1^{-+}$, $2^{-+}$ and belongs to the P-wave of the all-cham tetraquark state.
The masses of tetraquark states of all $qcbar q bar c$ and $ccbar c bar c$ quark configurations are evaluated in a constituent quark model, where the Cornell-like potential and one-gluon exchange spin-spin coupling are employed. All model parameters
The purpose of the present study is to explore the mass spectrum of the hidden charm tetraquark states within a diquark model. Proposing that a tetraquark state is composed of a diquark and an antidiquark, the masses of all possible $[qc][bar{q}bar{c
We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks, as is strongly supported by many phenomenological studies. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 on the
In this article, we study the masses and pole residues of the pseudoscalar-diquark-pseudoscalar-antidiquark type and vector-diquark-vector-antidiquark type scalar hidden-charm $cubar{c}bar{d}$ ($cubar{c}bar{s}$) tetraquark states with QCD sum rules b
Exotic charmonium and bottonomium resonances recently discovered are discussed and interpreted as diquark-antidiquark states containing a pair of charm quarks and a pair of light, up and down, quarks. Successes, shortcomings and predictions of the model are illustrated.