ﻻ يوجد ملخص باللغة العربية
Salient object detection is the pixel-level dense prediction task which can highlight the prominent object in the scene. Recently U-Net framework is widely used, and continuous convolution and pooling operations generate multi-level features which are complementary with each other. In view of the more contribution of high-level features for the performance, we propose a triplet transformer embedding module to enhance them by learning long-range dependencies across layers. It is the first to use three transformer encoders with shared weights to enhance multi-level features. By further designing scale adjustment module to process the input, devising three-stream decoder to process the output and attaching depth features to color features for the multi-modal fusion, the proposed triplet transformer embedding network (TriTransNet) achieves the state-of-the-art performance in RGB-D salient object detection, and pushes the performance to a new level. Experimental results demonstrate the effectiveness of the proposed modules and the competition of TriTransNet.
Existing RGB-D salient object detection (SOD) models usually treat RGB and depth as independent information and design separate networks for feature extraction from each. Such schemes can easily be constrained by a limited amount of training data or
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information. In this paper, we explore these issues from a new perspective. We integrate the features of different modalities through d
Depth maps contain geometric clues for assisting Salient Object Detection (SOD). In this paper, we propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD. Specifically
Conventional RGB-D salient object detection methods aim to leverage depth as complementary information to find the salient regions in both modalities. However, the salient object detection results heavily rely on the quality of captured depth data wh
Salient object detection(SOD) aims at locating the most significant object within a given image. In recent years, great progress has been made in applying SOD on many vision tasks. The depth map could provide additional spatial prior and boundary cue