We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_infty^m(q^t;q^t)_infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)leq 24$. We provide asymptotic formula for $c_t^{(m)}(n)$, and give characterizations of $n$ for which $c_t^{(m)}(n)$ is positive, negative or zero. We show that $c_t^{(m)}(n)$ is ultimately periodic in sign and conjecture that this is still true for other positive integer values of $t$ and $m$. Furthermore, we confirm this conjecture in the cases $(t,m)=(2,m),(p,1),(p,3)$ for arbitrary positive integer $m$ and prime $p$.