ترغب بنشر مسار تعليمي؟ اضغط هنا

Selective Light Field Refocusing for Camera Arrays Using Bokeh Rendering and Superresolution

104   0   0.0 ( 0 )
 نشر من قبل Yingqian Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Camera arrays provide spatial and angular information within a single snapshot. With refocusing methods, focal planes can be altered after exposure. In this letter, we propose a light field refocusing method to improve the imaging quality of camera arrays. In our method, the disparity is first estimated. Then, the unfocused region (bokeh) is rendered by using a depth-based anisotropic filter. Finally, the refocused image is produced by a reconstruction-based superresolution approach where the bokeh image is used as a regularization term. Our method can selectively refocus images with focused region being superresolved and bokeh being aesthetically rendered. Our method also enables postadjustment of depth of field. We conduct experiments on both public and self-developed datasets. Our method achieves superior visual performance with acceptable computational cost as compared to other state-of-the-art methods. Code is available at https://github.com/YingqianWang/Selective-LF-Refocusing.



قيم البحث

اقرأ أيضاً

This paper reviews the second AIM realistic bokeh effect rendering challenge and provides the description of the proposed solutions and results. The participating teams were solving a real-world bokeh simulation problem, where the goal was to learn a realistic shallow focus technique using a large-scale EBB! bokeh dataset consisting of 5K shallow / wide depth-of-field image pairs captured using the Canon 7D DSLR camera. The participants had to render bokeh effect based on only one single frame without any additional data from other cameras or sensors. The target metric used in this challenge combined the runtime and the perceptual quality of the solutions measured in the user study. To ensure the efficiency of the submitted models, we measured their runtime on standard desktop CPUs as well as were running the models on smartphone GPUs. The proposed solutions significantly improved the baseline results, defining the state-of-the-art for practical bokeh effect rendering problem.
64 - Jing Jin , Junhui Hou , Zhiyu Zhu 2020
Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution as the limited detector resolution has to be shared with the angular dimension. LF spatial super-resolution (SR) thus becomes an indispensable part of th e LF camera processing pipeline. The high-dimensionality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR. The performance of existing methods is still limited as they fail to thoroughly explore the coherence among LF sub-aperture images (SAIs) and are insufficient in accurately preserving the scenes parallax structure. To tackle this challenge, we propose a novel learning-based LF spatial SR framework. Specifically, each SAI of an LF image is first coarsely and individually super-resolved by exploring the complementary information among SAIs with selective combinatorial geometry embedding. To achieve efficient and effective selection of the complementary information, we propose two novel sub-modules conducted hierarchically: the patch selector provides an option of retrieving similar image patches based on offline disparity estimation to handle large-disparity correlations; and the SAI selector adaptively and flexibly selects the most informative SAIs to improve the embedding efficiency. To preserve the parallax structure among the reconstructed SAIs, we subsequently append a consistency regularization network trained over a structure-aware loss function to refine the parallax relationships over the coarse estimation. In addition, we extend the proposed method to irregular LF data. To the best of our knowledge, this is the first learning-based SR method for irregular LF data. Experimental results over both synthetic and real-world LF datasets demonstrate the significant advantage of our approach over state-of-the-art methods.
We present a virtual image refocusing method over an extended depth of field (DOF) enabled by cascaded neural networks and a double-helix point-spread function (DH-PSF). This network model, referred to as W-Net, is composed of two cascaded generator and discriminator network pairs. The first generator network learns to virtually refocus an input image onto a user-defined plane, while the second generator learns to perform a cross-modality image transformation, improving the lateral resolution of the output image. Using this W-Net model with DH-PSF engineering, we extend the DOF of a fluorescence microscope by ~20-fold. This approach can be applied to develop deep learning-enabled image reconstruction methods for localization microscopy techniques that utilize engineered PSFs to improve their imaging performance, including spatial resolution and volumetric imaging throughput.
Light field (LF) cameras can record scenes from multiple perspectives, and thus introduce beneficial angular information for image super-resolution (SR). However, it is challenging to incorporate angular information due to disparities among LF images . In this paper, we propose a deformable convolution network (i.e., LF-DFnet) to handle the disparity problem for LF image SR. Specifically, we design an angular deformable alignment module (ADAM) for feature-level alignment. Based on ADAM, we further propose a collect-and-distribute approach to perform bidirectional alignment between the center-view feature and each side-view feature. Using our approach, angular information can be well incorporated and encoded into features of each view, which benefits the SR reconstruction of all LF images. Moreover, we develop a baseline-adjustable LF dataset to evaluate SR performance under different disparity variations. Experiments on both public and our self-developed datasets have demonstrated the superiority of our method. Our LF-DFnet can generate high-resolution images with more faithful details and achieve state-of-the-art reconstruction accuracy. Besides, our LF-DFnet is more robust to disparity variations, which has not been well addressed in literature.
101 - Gaochang Wu , Yebin Liu , Lu Fang 2021
In this paper, a novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a sparse set of views. We indicate that the reconstruction can be efficiently modeled as angular restoration on an epipolar pla ne image (EPI). The main problem in direct reconstruction on the EPI involves an information asymmetry between the spatial and angular dimensions, where the detailed portion in the angular dimensions is damaged by undersampling. Directly upsampling or super-resolving the light field in the angular dimensions causes ghosting effects. To suppress these ghosting effects, we contribute a novel blur-restoration-deblur framework. First, the blur step is applied to extract the low-frequency components of the light field in the spatial dimensions by convolving each EPI slice with a selected blur kernel. Then, the restoration step is implemented by a CNN, which is trained to restore the angular details of the EPI. Finally, we use a non-blind deblur operation to recover the spatial high frequencies suppressed by the EPI blur. We evaluate our approach on several datasets, including synthetic scenes, real-world scenes and challenging microscope light field data. We demonstrate the high performance and robustness of the proposed framework compared with state-of-the-art algorithms. We further show extended applications, including depth enhancement and interpolation for unstructured input. More importantly, a novel rendering approach is presented by combining the proposed framework and depth information to handle large disparities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا