ترغب بنشر مسار تعليمي؟ اضغط هنا

OVIS: Open-Vocabulary Visual Instance Search via Visual-Semantic Aligned Representation Learning

114   0   0.0 ( 0 )
 نشر من قبل Sheng Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the task of open-vocabulary visual instance search (OVIS). Given an arbitrary textual search query, Open-vocabulary Visual Instance Search (OVIS) aims to return a ranked list of visual instances, i.e., image patches, that satisfies the search intent from an image database. The term open vocabulary means that there are neither restrictions to the visual instance to be searched nor restrictions to the word that can be used to compose the textual search query. We propose to address such a search challenge via visual-semantic aligned representation learning (ViSA). ViSA leverages massive image-caption pairs as weak image-level (not instance-level) supervision to learn a rich cross-modal semantic space where the representations of visual instances (not images) and those of textual queries are aligned, thus allowing us to measure the similarities between any visual instance and an arbitrary textual query. To evaluate the performance of ViSA, we build two datasets named OVIS40 and OVIS1600 and also introduce a pipeline for error analysis. Through extensive experiments on the two datasets, we demonstrate ViSAs ability to search for visual instances in images not available during training given a wide range of textual queries including those composed of uncommon words. Experimental results show that ViSA achieves an mAP@50 of 21.9% on OVIS40 under the most challenging setting and achieves an mAP@6 of 14.9% on OVIS1600 dataset.



قيم البحث

اقرأ أيضاً

160 - Keren Ye , Mingda Zhang , Wei Li 2018
To alleviate the cost of obtaining accurate bounding boxes for training todays state-of-the-art object detection models, recent weakly supervised detection work has proposed techniques to learn from image-level labels. However, requiring discrete ima ge-level labels is both restrictive and suboptimal. Real-world supervision usually consists of more unstructured text, such as captions. In this work we learn association maps between images and captions. We then use a novel objectness criterion to rank the resulting candidate boxes, such that high-ranking boxes have strong gradients along all edges. Thus, we can detect objects beyond a fixed object category vocabulary, if those objects are frequent and distinctive enough. We show that our objectness criterion improves the proposed bounding boxes in relation to prior weakly supervised detection methods. Further, we show encouraging results on object detection from image-level captions only.
Recently, contrastive learning has largely advanced the progress of unsupervised visual representation learning. Pre-trained on ImageNet, some self-supervised algorithms reported higher transfer learning performance compared to fully-supervised metho ds, seeming to deliver the message that human labels hardly contribute to learning transferrable visual features. In this paper, we defend the usefulness of semantic labels but point out that fully-supervised and self-supervised methods are pursuing different kinds of features. To alleviate this issue, we present a new algorithm named Supervised Contrastive Adjustment in Neighborhood (SCAN) that maximally prevents the semantic guidance from damaging the appearance feature embedding. In a series of downstream tasks, SCAN achieves superior performance compared to previous fully-supervised and self-supervised methods, and sometimes the gain is significant. More importantly, our study reveals that semantic labels are useful in assisting self-supervised methods, opening a new direction for the community.
105 - Xiaoni Li , Yu Zhou , Yifei Zhang 2021
Self-supervised representation learning for visual pre-training has achieved remarkable success with sample (instance or pixel) discrimination and semantics discovery of instance, whereas there still exists a non-negligible gap between pre-trained mo del and downstream dense prediction tasks. Concretely, these downstream tasks require more accurate representation, in other words, the pixels from the same object must belong to a shared semantic category, which is lacking in the previous methods. In this work, we present Dense Semantic Contrast (DSC) for modeling semantic category decision boundaries at a dense level to meet the requirement of these tasks. Furthermore, we propose a dense cross-image semantic contrastive learning framework for multi-granularity representation learning. Specially, we explicitly explore the semantic structure of the dataset by mining relations among pixels from different perspectives. For intra-image relation modeling, we discover pixel neighbors from multiple views. And for inter-image relations, we enforce pixel representation from the same semantic class to be more similar than the representation from different classes in one mini-batch. Experimental results show that our DSC model outperforms state-of-the-art methods when transferring to downstream dense prediction tasks, including object detection, semantic segmentation, and instance segmentation. Code will be made available.
Searching for small objects in large images is a task that is both challenging for current deep learning systems and important in numerous real-world applications, such as remote sensing and medical imaging. Thorough scanning of very large images is computationally expensive, particularly at resolutions sufficient to capture small objects. The smaller an object of interest, the more likely it is to be obscured by clutter or otherwise deemed insignificant. We examine these issues in the context of two complementary problems: closed-set object detection and open-set target search. First, we present a method for predicting pixel-level objectness from a low resolution gist image, which we then use to select regions for performing object detection locally at high resolution. This approach has the benefit of not being fixed to a predetermined grid, thereby requiring fewer costly high-resolution glimpses than existing methods. Second, we propose a novel strategy for open-set visual search that seeks to find all instances of a target class which may be previously unseen and is defined by a single image. We interpret both detection problems through a probabilistic, Bayesian lens, whereby the objectness maps produced by our method serve as priors in a maximum-a-posteriori approach to the detection step. We evaluate the end-to-end performance of both the combination of our patch selection strategy with this target search approach and the combination of our patch selection strategy with standard object detection methods. Both elements of our approach are seen to significantly outperform baseline strategies.
While successful for various computer vision tasks, deep neural networks have shown to be vulnerable to texture style shifts and small perturbations to which humans are robust. In this work, we show that the robustness of neural networks can be great ly improved through the use of random convolutions as data augmentation. Random convolutions are approximately shape-preserving and may distort local textures. Intuitively, randomized convolutions create an infinite number of new domains with similar global shapes but random local textures. Therefore, we explore using outputs of multi-scale random convolutions as new images or mixing them with the original images during training. When applying a network trained with our approach to unseen domains, our method consistently improves the performance on domain generalization benchmarks and is scalable to ImageNet. In particular, in the challenging scenario of generalizing to the sketch domain in PACS and to ImageNet-Sketch, our method outperforms state-of-art methods by a large margin. More interestingly, our method can benefit downstream tasks by providing a more robust pretrained visual representation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا