Dark-ages Reionization and Galaxy Formation Simulation XX. The Ly$alpha$ IGM transmission properties and environment of bright galaxies during the Epoch of Reionization


الملخص بالإنكليزية

The highly neutral inter-galactic medium (IGM) during the Epoch of Reionization (EoR) is expected to suppress Ly$alpha$ emission with damping-wing absorption, causing nearly no Ly$alpha$ detection from star-forming galaxies at $z{sim}8$. However, spectroscopic observations of the 4 brightest galaxies (${rm H}_{160}{sim}25$ mag) at these redshifts do reveal prominent Ly$alpha$ line, suggesting locally ionised IGM. In this paper, we explore the Ly$alpha$ IGM transmission and environment of bright galaxies during the EoR using the Meraxes semi-analytic model. We find brighter galaxies to be less affected by damping-wing absorption as they are effective at ionizing surrounding neutral hydrogen. Specifically, the brightest sources (${rm H}_{160}{lesssim}25.5$ mag) lie in the largest ionized regions in our simulation, and have low attenuation of their Ly$alpha$ from the IGM (optical depth ${<}1$). Fainter galaxies (25.5 mag${<}{rm H}_{160}{<}27.5$ mag) have transmission that depends on UV luminosity, leading to a lower incidence of Ly$alpha$ detection at fainter magnitudes. This luminosity-dependent attenuation explains why Ly$alpha$ has only been observed in the brightest galaxies at $z{sim}8$. Follow-up observations have revealed counterparts in the vicinity of these confirmed $z{sim}8$ Ly$alpha$ emitters. The environments of our modelled analogues agree with these observations in the number of nearby galaxies, which is a good indicator of whether Ly$alpha$ can be detected among fainter galaxies. At the current observational limit, galaxies with ${ge}2$--5 neighbours within $2{times}2$ are ${sim}2$--3 times more likely to show Ly$alpha$ emission. JWST will discover an order of magnitude more neighbours, revealing ${gtrsim}50$ galaxies in the largest ionizing bubbles and facilitating direct study of reionization morphology.

تحميل البحث