ﻻ يوجد ملخص باللغة العربية
The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next five years. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as stellar and galactic contaminants, and to develop a procedure to mitigate them. Density fluctuations of quasar targets are found to be related to photometric properties such as seeing and depth of the Data Release 9 of the DESI Legacy Imaging Surveys. To model this complex relation, we explore machine learning algorithms (Random Forest and Multi-Layer Perceptron) as an alternative to the standard linear regression. Splitting the footprint of the Legacy Imaging Surveys into three regions according to photometric properties, we perform an independent analysis in each region, validating our method using eBOSS EZ-mocks. The mitigation procedure is tested by comparing the angular correlation of the corrected target selection on each photometric region to the angular correlation function obtained using quasars from the Sloan Digital Sky Survey (SDSS)Data Release 16. With our procedure, we recover a similar level of correlation between DESI quasar targets and SDSS quasars in two thirds of the total footprint and we show that the excess of correlation in the remaining area is due to a stellar contamination which should be removed with DESI spectroscopic data. We derive the Limber parameters in our three imaging regions and compare them to previous measurements from SDSS and the 2dF QSO Redshift Survey.
We characterise the selection cuts and clustering properties of a magnitude-limited sample of bright galaxies that is part of the Bright Galaxy Survey (BGS) of the Dark Energy Spectroscopic Instrument (DESI) using the ninth data release of the Legacy
The DESI survey will measure large-scale structure using quasars as direct tracers of dark matter in the redshift range $0.9<z<2.1$ and using quasar Ly-$alpha$ forests at $z>2.1$. We present two methods to select candidate quasars for DESI based on i
The DESI Legacy Imaging Surveys are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image approximately 14,000 deg^2 of the extragala
In a recent study, we developed a method to model the impact of photometric redshift uncertainty on the two-point correlation function (2PCF). In this method, we can obtain both the intrinsic clustering strength and the photometric redshift errors si
We present a new method for quasar target selection using photometric fluxes and a Bayesian probabilistic approach. For our purposes we target quasars using Sloan Digital Sky Survey (SDSS) photometry to a magnitude limit of g=22. The efficiency and c