ﻻ يوجد ملخص باللغة العربية
In this paper, we prove a power-law version dynamical localization for a random operator $mathrm{H}_{omega}$ on $mathbb{Z}^d$ with long-range hopping. In breif, for the linear Schrodinger equation $$mathrm{i}partial_{t}u=mathrm{H}_{omega}u, quad u in ell^2(mathbb{Z}^d), $$ the Sobolev norm of the solution with well localized initial state is bounded for any $tgeq 0$.
We prove that the local eigenvalue statistics at energy $E$ in the localization regime for Schrodinger operators with random point interactions on $mathbb{R}^d$, for $d=1,2,3$, is a Poisson point process with the intensity measure given by the densit
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t
For one-dimensional random Schrodinger operators, the integrated density of states is known to be given in terms of the (averaged) rotation number of the Prufer phase dynamics. This paper develops a controlled perturbation theory for the rotation num
Consider an arbitrary extension of a free $mathbb Z^d$-action on the Cantor set. It is shown that it has dynamical asymptotic dimension at most $3^d - 1$.
We prove Anderson localization at the internal band-edges for periodic magnetic Schr{o}dinger operators perturbed by random vector potentials of Anderson-type. This is achieved by combining new results on the Lifshitz tails behavior of the integrated