ﻻ يوجد ملخص باللغة العربية
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks. Despite the great success, recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs prediction by modifying graphs. On the other hand, the explanation of GNNs (GNNExplainer) provides a better understanding of a trained GNN model by generating a small subgraph and features that are most influential for its prediction. In this paper, we first perform empirical studies to validate that GNNExplainer can act as an inspection tool and have the potential to detect the adversarial perturbations for graphs. This finding motivates us to further initiate a new problem investigation: Whether a graph neural network and its explanations can be jointly attacked by modifying graphs with malicious desires? It is challenging to answer this question since the goals of adversarial attacks and bypassing the GNNExplainer essentially contradict each other. In this work, we give a confirmative answer to this question by proposing a novel attack framework (GEAttack), which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities. Extensive experiments on two explainers (GNNExplainer and PGExplainer) under various real-world datasets demonstrate the effectiveness of the proposed method.
Deep Neural Networks (DNN) are known to be vulnerable to adversarial samples, the detection of which is crucial for the wide application of these DNN models. Recently, a number of deep testing methods in software engineering were proposed to find the
Graph neural network (GNN) explanations have largely been facilitated through post-hoc introspection. While this has been deemed successful, many post-hoc explanation methods have been shown to fail in capturing a models learned representation. Due t
Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgra
In graph neural networks (GNNs), message passing iteratively aggregates nodes information from their direct neighbors while neglecting the sequential nature of multi-hop node connections. Such sequential node connections e.g., metapaths, capture crit
Graph neural network (GNN) has recently been established as an effective representation learning framework on graph data. However, the popular message passing models rely on local permutation invariant aggregate functions, which gives rise to the con