ﻻ يوجد ملخص باللغة العربية
Natural Language Processing (NLP) models propagate social biases about protected attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure such biases. While many existing works propose bias evaluation methodologies for different tasks, there remains a need to cohesively understand what biases and normative harms each of these measures captures and how different measures compare. To address this gap, this work presents a comprehensive survey of existing bias measures in NLP as a function of the associated NLP tasks, metrics, datasets, and social biases and corresponding harms. This survey also organizes metrics into different categories to present advantages and disadvantages. Finally, we propose a documentation standard for bias measures to aid their development, categorization, and appropriate usage.
Natural Language Processing (NLP) systems learn harmful societal biases that cause them to amplify inequality as they are deployed in more and more situations. To guide efforts at debiasing these systems, the NLP community relies on a variety of metr
Recent research towards understanding neural networks probes models in a top-down manner, but is only able to identify model tendencies that are known a priori. We propose Susceptibility Identification through Fine-Tuning (SIFT), a novel abstractive
Increasingly, software is making autonomous decisions in case of criminal sentencing, approving credit cards, hiring employees, and so on. Some of these decisions show bias and adversely affect certain social groups (e.g. those defined by sex, race,
As the numbers of submissions to conferences grow quickly, the task of assessing the quality of academic papers automatically, convincingly, and with high accuracy attracts increasing attention. We argue that studying interpretable dimensions of thes
Recent advances in natural language processing (NLP) have the ability to transform how classroom learning takes place. Combined with the increasing integration of technology in todays classrooms, NLP systems leveraging question answering and dialog p