ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative corrections to semileptonic beta decays: Progress and challenges

185   0   0.0 ( 0 )
 نشر من قبل Chien Yeah Seng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Chien-Yeah Seng




اسأل ChatGPT حول البحث

We review some recent progress in the theory of electroweak radiative corrections in semileptonic decay processes. The resurrection of the so-called Sirlins representation based on current algebra relations permits a clear separation between the perturbatively-calculable and incalculable pieces in the $mathcal{O}(G_Falpha)$ radiative corrections. The latter are expressed as compact hadronic matrix elements that allow systematic non-perturbative analysis such as dispersion relation and lattice QCD. This brings substantial improvements to the precision of the electroweak radiative corrections in semileptonic decays of pion, kaon, free neutron and $J^P=0^+$ nuclei that are important theory inputs in precision tests of the Standard Model. Unresolved issues and future prospects are discussed.



قيم البحث

اقرأ أيضاً

Two of the elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix, $|V_{ub}|$ and $|V_{cb}|$, are extracted from semileptonic B decays. The results of the B factories, analysed in the light of the most recent theoretical calculations, remain p uzzling, because for both $|V_{ub}|$ and $|V_{cb}|$ the exclusive and inclusive determinations are in clear tension. Further, measurements in the $tau$ channels at Belle, Babar, and LHCb show discrepancies with the Standard Model predictions, pointing to a possible violation of lepton flavor universality. LHCb and Belle II have the potential to resolve these issues in the next few years. This article summarizes the discussions and results obtained at the MITP workshop held on April 9--13, 2018, in Mainz, Germany, with the goal to develop a medium-term strategy of analyses and calculations aimed at solving the puzzles. Lattice and continuum theorists working together with experimentalists have discussed how to reshape the semileptonic analyses in view of the much higher luminosity expected at Belle II, searching for ways to systematically validate the theoretical predictions in both exclusive and inclusive B decays, and to exploit the rich possibilities at LHCb.
We revisit QCD calculations of radiative heavy meson decay form factors by including the subleading power corrections from the twist-two photon distribution amplitude at next-to-leading-order in $alpha_s$ with the method of the light-cone sum rules ( LCSR). The desired hard-collinear factorization formula for the vacuum-to-photon correlation function with the interpolating currents for two heavy mesons is constructed with the operator-product-expansion technique in the presence of evanescent operators. Applying the background field approach, the higher twist corrections from both the two-particle and three-particle photon distribution amplitudes are further computed in the LCSR framework at leading-order in QCD, up to the twist-four accuracy. Combining the leading power point-like photon contribution at tree level and the subleading power resolved photon corrections from the newly derived LCSR, we update theory predictions for the nonperturbative couplings describing the electromagnetic decay processes of the heavy mesons $H^{ast , pm} to H^{pm} , gamma$, $H^{ast , 0} to H^{0} , gamma$, $H_s^{ast , pm} to H_s^{pm} , gamma$ (with $H=D, , B$). Furthermore, we perform an exploratory comparisons of our sum rule computations of the heavy-meson magnetic couplings with the previous determinations based upon different QCD approaches and phenomenological models.
Inclusive semileptonic decays of beauty baryons are studied using the heavy quark expansion to ${cal O}(1/m_b^3)$, at leading order in $alpha_s$. The case of a polarized decaying baryon is examined, with reference to $Lambda_b$. An extension of the S tandard Model effective Hamiltonian inducing $b to U ell {bar u}_ ell$ transitions ($U=u,,c$ and $ell=e,,mu,,tau$) is considered, which comprises the full set of D=6 semileptonic operators with left-handed neutrinos. The effects of the new operators in several observables are described.
We discuss the theoretical framework required for the computation of radiative corrections to semileptonic decay rates in lattice simulations, and in particular to those for $K_{ell3}$ decays. This is an extension of the framework we have developed a nd successfully implemented for leptonic decays. New issues which arise for semileptonic decays, include the presence of unphysical terms which grow exponentially with the time separation between the insertion of the weak Hamiltonian and the sink for the final-state meson-lepton pair. Such terms must be identified and subtracted. We discuss the cancellation of infrared divergences and show that, with the QED$_mathrm{,L}$ treatment of the zero mode in the photon propagator, the $O(1/L)$ finite-volume corrections are universal. These corrections however, depend not only on the semileptonic form factors $f^pm(q^2)$ but also on their derivatives $df^pm/dq^2$. (Here $q$ is the momentum transfer between the initial and final state mesons.) We explain the perturbative calculation which would need to be performed to subtract the $O(1/L)$ finite-volume effects.
Applying the method of light-cone sum rules with photon distribution amplitudes, we compute the subleading-power correction to the radiative leptonic $B to gamma ell u$ decay, at next-to-leading order in QCD for the twist-two contribution and at lea ding order in $alpha_s$ for the higher-twist contributions, induced by the hadronic component of the collinear photon. The leading-twist hadronic photon effect turns out to preserve the symmetry relation between the two $B to gamma$ form factors due to the helicity conservation, however, the higher-twist hadronic photon corrections can yield symmetry-breaking effect already at tree level in QCD. Using the conformal expansion of photon distribution amplitudes with the non-perturbative parameters estimated from QCD sum rules, the twist-two hadronic photon contribution can give rise to approximately 30% correction to the leading-power direct photon effect computed from the perturbative QCD factorization approach. In contrast, the subleading-power corrections from the higher-twist two-particle and three-particle photon distribution amplitudes are estimated to be of ${cal O} (3 sim 5%)$ with the light-cone sum rule approach. We further predict the partial branching fractions of $B to gamma ell u $ with a photon-energy cut $E_{gamma} geq E_{rm cut}$, which are of interest for determining the inverse moment of the leading-twist $B$-meson distribution amplitude thanks to the forthcoming high-luminosity Belle II experiment at KEK.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا