ﻻ يوجد ملخص باللغة العربية
This paper reports on a dynamic semantic mapping framework that incorporates 3D scene flow measurements into a closed-form Bayesian inference model. Existence of dynamic objects in the environment cause artifacts and traces in current mapping algorithms, leading to an inconsistent map posterior. We leverage state-of-the-art semantic segmentation and 3D flow estimation using deep learning to provide measurements for map inference. We develop a continuous (i.e., can be queried at arbitrary resolution) Bayesian model that propagates the scene with flow and infers a 3D semantic occupancy map with better performance than its static counterpart. Experimental results using publicly available data sets show that the proposed framework generalizes its predecessors and improves over direct measurements from deep neural networks consistently.
3D scene representation for robot manipulation should capture three key object properties: permanency -- objects that become occluded over time continue to exist; amodal completeness -- objects have 3D occupancy, even if only partial observations are
Minimally invasive surgery (MIS) has many documented advantages, but the surgeons limited visual contact with the scene can be problematic. Hence, systems that can help surgeons navigate, such as a method that can produce a 3D semantic map, can compe
Recent work has achieved dense 3D reconstruction with wide-aperture imaging sonar using a stereo pair of orthogonally oriented sonars. This allows each sonar to observe a spatial dimension that the other is missing, without requiring any prior assump
Given two consecutive frames from a pair of stereo cameras, 3D scene flow methods simultaneously estimate the 3D geometry and motion of the observed scene. Many existing approaches use superpixels for regularization, but may predict inconsistent shap
In autonomous navigation of mobile robots, sensors suffer from massive occlusion in cluttered environments, leaving significant amount of space unknown during planning. In practice, treating the unknown space in optimistic or pessimistic ways both se