ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning for surface prediction in ACTS

185   0   0.0 ( 0 )
 نشر من قبل Tilo Wettig
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an ongoing R&D activity for machine-learning-assisted navigation through detectors to be used for track reconstruction. We investigate different approaches of training neural networks for surface prediction and compare their results. This work is carried out in the context of the ACTS tracking toolkit.



قيم البحث

اقرأ أيضاً

57 - Fedor Ratnikov 2020
Design of new experiments, as well as upgrade of ongoing ones, is a continuous process in the experimental high energy physics. Since the best solution is a trade-off between different kinds of limitations, a quick turn over is necessary to evaluate physics performance for different techniques in different configurations. Two typical problems which slow down evaluation of physics performance for particular approaches to calorimeter detector technologies and configurations are: - Emulating particular detector properties including raw detector response together with a signal processing chain to adequately simulate a calorimeter response for different signal and background conditions. This includes combining detector properties obtained from the general Geant simulation with properties obtained from different kinds of bench and beam tests of detector and electronics prototypes. - Building an adequate reconstruction algorithm for physics reconstruction of the detector response which is reasonably tuned to extract the most of the performance provided by the given detector configuration. Being approached from the first principles, both problems require significant development efforts. Fortunately, both problems may be addressed by using modern machine learning approaches, that allow a combination of available details of the detector techniques into corresponding higher level physics performance in a semi-automated way. In this paper, we discuss the use of advanced machine learning techniques to speed up and improve the precision of the detector development and optimisation cycle, with an emphasis on the experience and practical results obtained by applying this approach to epitomising the electromagnetic calorimeter design as a part of the upgrade project for the LHCb detector at LHC.
This article presents a general framework for recovering missing dynamical systems using available data and machine learning techniques. The proposed framework reformulates the prediction problem as a supervised learning problem to approximate a map that takes the memories of the resolved and identifiable unresolved variables to the missing components in the resolved dynamics. We demonstrate the effectiveness of the proposed framework with a theoretical guarantee of a path-wise convergence of the resolved variables up to finite time and numerical tests on prototypical models in various scientific domains. These include the 57-mode barotropic stress models with multiscale interactions that mimic the blocked and unblocked patterns observed in the atmosphere, the nonlinear Schr{o}dinger equation which found many applications in physics such as optics and Bose-Einstein-Condense, the Kuramoto-Sivashinsky equation which spatiotemporal chaotic pattern formation models trapped ion mode in plasma and phase dynamics in reaction-diffusion systems. While many machine learning techniques can be used to validate the proposed framework, we found that recurrent neural networks outperform kernel regression methods in terms of recovering the trajectory of the resolved components and the equilibrium one-point and two-point statistics. This superb performance suggests that recurrent neural networks are an effective tool for recovering the missing dynamics that involves approximation of high-dimensional functions.
The spectroscopy measurement is one of main pathways for exploring and understanding the nature. Today, it seems that racing artificial intelligence will remould its styles. The algorithms contained in huge neural networks are capable of substituting many of expensive and complex components of spectrum instruments. In this work, we presented a smart machine learning strategy on the measurement of absorbance curves, and also initially verified that an exceedingly-simplified equipment is sufficient to meet the needs for this strategy. Further, with its simplicity, the setup is expected to infiltrate into many scientific areas in versatile forms.
Academics and practitioners have studied over the years models for predicting firms bankruptcy, using statistical and machine-learning approaches. An earlier sign that a company has financial difficulties and may eventually bankrupt is going in emph{ default}, which, loosely speaking means that the company has been having difficulties in repaying its loans towards the banking system. Firms default status is not technically a failure but is very relevant for bank lending policies and often anticipates the failure of the company. Our study uses, for the first time according to our knowledge, a very large database of granular credit data from the Italian Central Credit Register of Bank of Italy that contain information on all Italian companies past behavior towards the entire Italian banking system to predict their default using machine-learning techniques. Furthermore, we combine these data with other information regarding companies public balance sheet data. We find that ensemble techniques and random forest provide the best results, corroborating the findings of Barboza et al. (Expert Syst. Appl., 2017).
Experiments searching for rare processes like neutrinoless double beta decay heavily rely on the identification of background events to reduce their background level and increase their sensitivity. We present a novel machine learning based method to recognize one of the most abundant classes of background events in these experiments. By combining a neural network for feature extraction with a smaller classification network, our method can be trained with only a small number of labeled events. To validate our method, we use signals from a broad-energy germanium detector irradiated with a $^{228}$Th gamma source. We find that it matches the performance of state-of-the-art algorithms commonly used for this detector type. However, it requires less tuning and calibration and shows potential to identify certain types of background events missed by other methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا