ﻻ يوجد ملخص باللغة العربية
We present an interpolation method for the specific heat $c_v(T)$, when there is a phase transition with a logarithmic singularity in $c_v$ at a critical temperature $T=T_c$. The method uses the fact that $c_v$ is constrained both by its high temperature series expansion, and just above $T_c$ by the type of singularity. We test our method on the ferro and antiferromagnetic Ising model on the two-dimensional square, triangular, honeycomb, and kagome lattices, where we find an excellent agreement with the exact solutions. We then explore the XXZ Heisenberg model, for which no exact results are available.
We present new results for the Kondo lattice model of strongly correlated electrons, in 1-, 2-, and 3-dimensions, obtained from high-order linked-cluster series expansions. Results are given for varies ground state properties at half-filling, and for
The bond-propagation (BP) algorithm for the specific heat of the two dimensional Ising model is developed and that for the internal energy is completed. Using these algorithms, we study the critical internal energy and specific heat of the model on t
A Green-function theory for the dynamic spin susceptibility in the square-lattice spin-1/2 antiferromagnetic compass-Heisenberg model employing a generalized mean-field approximation is presented. The theory describes magnetic long-range order (LRO)
The Hund coupling in multiorbital Hubbard systems induces spin freezing and associated Hund metal behavior. Using dynamical mean field theory, we explore the effect of local moment formation, spin and charge excitations on the entropy and specific he
We calculate ground state properties (energy, magnetization, susceptibility) and one-particle spectra for the $S = 1$ Heisenberg antiferromagnet with easy-axis or easy-plane single site anisotropy, on the square lattice. Series expansions are used, i