ترغب بنشر مسار تعليمي؟ اضغط هنا

Lights, Camera, Action! A Framework to Improve NLP Accuracy over OCR documents

342   0   0.0 ( 0 )
 نشر من قبل Alexey Romanov
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Document digitization is essential for the digital transformation of our societies, yet a crucial step in the process, Optical Character Recognition (OCR), is still not perfect. Even commercial OCR systems can produce questionable output depending on the fidelity of the scanned documents. In this paper, we demonstrate an effective framework for mitigating OCR errors for any downstream NLP task, using Named Entity Recognition (NER) as an example. We first address the data scarcity problem for model training by constructing a document synthesis pipeline, generating realistic but degraded data with NER labels. We measure the NER accuracy drop at various degradation levels and show that a text restoration model, trained on the degraded data, significantly closes the NER accuracy gaps caused by OCR errors, including on an out-of-domain dataset. For the benefit of the community, we have made the document synthesis pipeline available as an open-source project.



قيم البحث

اقرأ أيضاً

The focus of our paper is the identification and correction of non-word errors in OCR text. Such errors may be the result of incorrect insertion, deletion, or substitution of a character, or the transposition of two adjacent characters within a singl e word. Or, it can be the result of word boundary problems that lead to run-on errors and incorrect-split errors. The traditional N-gram correction methods can handle single-word errors effectively. However, they show limitations when dealing with split and merge errors. In this paper, we develop an unsupervised method that can handle both errors. The method we develop leads to a sizable improvement in the correction rates. This tutorial paper addresses very difficult word correction problems - namely incorrect run-on and split errors - and illustrates what needs to be considered when addressing such problems. We outline a possible approach and assess its success on a limited study.
Neural NLP models are increasingly accurate but are imperfect and opaque---they break in counterintuitive ways and leave end users puzzled at their behavior. Model interpretation methods ameliorate this opacity by providing explanations for specific model predictions. Unfortunately, existing interpretation codebases make it difficult to apply these methods to new models and tasks, which hinders adoption for practitioners and burdens interpretability researchers. We introduce AllenNLP Interpret, a flexible framework for interpreting NLP models. The toolkit provides interpretation primitives (e.g., input gradients) for any AllenNLP model and task, a suite of built-in interpretation methods, and a library of front-end visualization components. We demonstrate the toolkits flexibility and utility by implementing live demos for five interpretation methods (e.g., saliency maps and adversarial attacks) on a variety of models and tasks (e.g., masked language modeling using BERT and reading comprehension using BiDAF). These demos, alongside our code and tutorials, are available at https://allennlp.org/interpret .
Speech-enabled systems typically first convert audio to text through an automatic speech recognition (ASR) model and then feed the text to downstream natural language processing (NLP) modules. The errors of the ASR system can seriously downgrade the performance of the NLP modules. Therefore, it is essential to make them robust to the ASR errors. Previous work has shown it is effective to employ data augmentation methods to solve this problem by injecting ASR noise during the training process. In this paper, we utilize the prevalent pre-trained language model to generate training samples with ASR-plausible noise. Compare to the previous methods, our approach generates ASR noise that better fits the real-world error distribution. Experimental results on spoken language translation(SLT) and spoken language understanding (SLU) show that our approach effectively improves the system robustness against the ASR errors and achieves state-of-the-art results on both tasks.
Transfer learning has yielded state-of-the-art (SoTA) results in many supervised NLP tasks. However, annotated data for every target task in every target language is rare, especially for low-resource languages. We propose UXLA, a novel unsupervised d ata augmentation framework for zero-resource transfer learning scenarios. In particular, UXLA aims to solve cross-lingual adaptation problems from a source language task distribution to an unknown target language task distribution, assuming no training label in the target language. At its core, UXLA performs simultaneous self-training with data augmentation and unsupervised sample selection. To show its effectiveness, we conduct extensive experiments on three diverse zero-resource cross-lingual transfer tasks. UXLA achieves SoTA results in all the tasks, outperforming the baselines by a good margin. With an in-depth framework dissection, we demonstrate the cumulative contributions of different components to its success.
Empirical natural language processing (NLP) systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components, ranging from data ingestion, human annotation, to text retrieval, analysis, generation , and visualization. We establish a unified open-source framework to support fast development of such sophisticated NLP workflows in a composable manner. The framework introduces a uniform data representation to encode heterogeneous results by a wide range of NLP tasks. It offers a large repository of processors for NLP tasks, visualization, and annotation, which can be easily assembled with full interoperability under the unified representation. The highly extensible framework allows plugging in custom processors from external off-the-shelf NLP and deep learning libraries. The whole framework is delivered through two modularized yet integratable open-source projects, namely Forte (for workflow infrastructure and NLP function processors) and Stave (for user interaction, visualization, and annotation).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا