ﻻ يوجد ملخص باللغة العربية
We prove that the Beta random walk has second order cubic fluctuations from the large deviation principle of the GUE Tracy-Widom type for arbitrary values $upalpha>0$ and $upbeta>0$ of the parameters of the Beta distribution, removing previous restrictions on their values. Furthermore, we prove that the GUE Tracy-Widom fluctuations still hold in the intermediate disorder regime. We also show that any random walk in space-time random environment that matches certain moments with the Beta random walk also has GUE Tracy-Widom fluctuations in the intermediate disorder regime. As a corollary we show the emergence of GUE Tracy-Widom fluctuations from the large deviation principle for trajectories ending at boundary points for random walks in space (time-independent) i.i.d. Dirichlet random environment in dimension $d=2$ for a class of asymptotic behavior of the parameters.
We prove a Large Deviations Principle for the number of intersections of two independent infinite-time ranges in dimension five and more, improving upon the moment bounds of Khanin, Mazel, Shlosman and Sina{i} [KMSS94]. This settles, in the discrete
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim
Let ${{bf mathcal{Z}}_n:ngeq 1}$ be a sequence of i.i.d. random probability measures. Independently, for each $ngeq 1$, let $(X_{n1},ldots, X_{nn})$ be a random vector of positive random variables that add up to one. This paper studies the large devi
This paper is concerned with the limit theory of the extreme order statistics derived from random walks. We establish the joint convergence of the order statistics near the minimum of a random walk in terms of the Feller chains. Detailed descriptions
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, w