UPDesc: Unsupervised Point Descriptor Learning for Robust Registration


الملخص بالإنكليزية

In this work, we propose UPDesc, an unsupervised method to learn point descriptors for robust point cloud registration. Our work builds upon a recent supervised 3D CNN-based descriptor extraction framework, namely, 3DSmoothNet, which leverages a voxel-based representation to parameterize the surrounding geometry of interest points. Instead of using a predefined fixed-size local support in voxelization, which potentially limits the access of richer local geometry information, we propose to learn the support size in a data-driven manner. To this end, we design a differentiable voxelization module that can back-propagate gradients to the support size optimization. To optimize descriptor similarity, the prior 3D CNN work and other supervised methods require abundant correspondence labels or pose annotations of point clouds for crafting metric learning losses. Differently, we show that unsupervised learning of descriptor similarity can be achieved by performing geometric registration in networks. Our learning objectives consider descriptor similarity both across and within point clouds without supervision. Through extensive experiments on point cloud registration benchmarks, we show that our learned descriptors yield superior performance over existing unsupervised methods.

تحميل البحث