ﻻ يوجد ملخص باللغة العربية
We construct a family of oriented extended topological field theories using the AKSZ construction in derived algebraic geometry, which can be viewed as an algebraic and topological version of the classical AKSZ field theories that occur in physics. These have as their targets higher categories of symplectic derived stacks, with higher morphisms given by iterated Lagrangian correspondences. We define these, as well as analogous higher categories of oriented derived stacks and iterated oriented cospans, and prove that all objects are fully dualizable. Then we set up a functorial version of the AKSZ construction, first implemented in this context by Pantev-Toen-Vaquie-Vezzosi, and show that it induces a family of symmetric monoidal functors from oriented stacks to symplectic stacks. Finally, we construct forgetful functors from the unoriented bordism $(infty,n)$-category to cospans of spaces, and from the oriented bordism $(infty,n)$-category to cospans of spaces equipped with an orientation; the latter combines with the AKSZ functors by viewing spaces as constant stacks, giving the desired field theories.
We consider generalized $Lambda$-structures on algebras and schemes over the ring of integers $mathit{O}_K$ of a number field $K$. When $K=mathbb{Q}$, these agree with the $lambda$-ring structures of algebraic K-theory. We then study reduced finite f
We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes.
Structures where we have both a contravariant (pullback) and a covariant (pushforward) functoriality that satisfy base change can be encoded by functors out of ($infty$-)categories of spans (or correspondences). In this paper we study the more compli
This book is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory. A review of basic category theory is followed by a systematic discussion of 2-/bicategories, pasting diagrams, lax functors,
By a ring groupoid we mean an animated ring whose i-th homotopy groups are zero for all i>1. In this expository note we give an elementary treatment of the (2,1)-category of ring groupoids (i.e., without referring to general animated rings and with