ﻻ يوجد ملخص باللغة العربية
We construct a particle integrator for nonrelativistic particles by means of the splitting method based on the exact flow of the equation of motion of particles in the presence of constant electric and magnetic field. This integrator is volume-preserving similar to the standard Boris integrator and is suitable for long-term integrations in particle-in-cell simulations. Numerical tests reveal that it is significantly more accurate than previous volume-preserving integrators with second-order accuracy. For example, in the $E times B$ drift test, this integrator is more accurate than the Boris integrator and the integrator based on the exact solution of gyro motion by three and two orders of magnitude, respectively. In addition, we derive approximate integrators that incur low computational cost and high-precision integrators displaying fourth- to tenth-order accuracy with the aid of the composition method. These integrators are also volume-preserving. It is also demonstrated that the Boris integrator is equivalent to the simplest case of the approximate integrators derived in this study.
The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kin
In recent years, several gauge-symmetric particle-in-cell (PIC) methods have been developed whose simulations of particles and electromagnetic fields exactly conserve charge. While it is rightly observed that these methods gauge symmetry gives rise t
We design and develop a new Particle-in-Cell (PIC) method for plasma simulations using Deep-Learning (DL) to calculate the electric field from the electron phase space. We train a Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN) t
This paper discusses temporally continuous and discrete forms of the speed-limited particle-in-cell (SLPIC) method first treated by Werner et al. [Phys. Plasmas 25, 123512 (2018)]. The dispersion relation for a 1D1V electrostatic plasma whose fast pa
Upon inclusion of collisions, the speed-limited particle-in-cell (SLPIC) simulation method successfully computed the Paschen curve for argon. The simulations modelled an electron cascade across an argon-filled capacitor, including electron-neutral io