ﻻ يوجد ملخص باللغة العربية
We study Markov chains on $mathbb Z^m$, $mgeq 2$, that behave like a standard symmetric random walk outside of the hyperplane (membrane) $H={0}times mathbb Z^{m-1}$. The transition probabilities on the membrane $H$ are periodic and also depend on the incoming direction to $H$, what makes the membrane $H$ two-sided. Moreover, sliding along the membrane is allowed. We show that the natural scaling limit of such Markov chains is a $m$-dimensional diffusion whose first coordinate is a skew Brownian motion and the other $m-1$ coordinates is a Brownian motion with a singular drift controlled by the local time of the first coordinate at $0$. In the proof we utilize a martingale characterization of the Walsh Brownian motion and determine the effective permeability and slide direction. Eventually, a similar convergence theorem is established for the one-sided membrane without slides and random iid transition probabilities.
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t
We study models of continuous time, symmetric, $Z^d$-valued random walks in random environments. One of our aims is to derive estimates on the decay of transition probabilities in a case where a uniform ellipticity assumption is absent. We consider t
In this paper we prove that, under the assumption of quasi-transitivity, if a branching random walk on ${{mathbb{Z}}^d}$ survives locally (at arbitrarily large times there are individuals alive at the origin), then so does the same process when restr
A class of interacting particle systems on $mathbb{Z}$, involving instantaneously annihilating or coalescing nearest neighbour random walks, are shown to be Pfaffan point processes for all deterministic initial conditions. As diffusion limits, explic
We give the ``quenched scaling limit of Bouchauds trap model in ${dge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $alpha$-stable subordinator.